Projective geometry

Projective space

In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet at infinity. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally, an affine space with points at infinity, in such a way that there is one point at infinity of each direction of parallel lines. This definition of a projective space has the disadvantage of not being isotropic, having two different sorts of points, which must be considered separately in proofs. Therefore, other definitions are generally preferred. There are two classes of definitions. In synthetic geometry, point and line are primitive entities that are related by the incidence relation "a point is on a line" or "a line passes through a point", which is subject to the axioms of projective geometry. For some such set of axioms, the projective spaces that are defined have been shown to be equivalent to those resulting from the following definition, which is more often encountered in modern textbooks. Using linear algebra, a projective space of dimension n is defined as the set of the vector lines (that is, vector subspaces of dimension one) in a vector space V of dimension n + 1. Equivalently, it is the quotient set of V \ {0} by the equivalence relation "being on the same vector line". As a vector line intersects the unit sphere of V in two antipodal points, projective spaces can be equivalently defined as spheres in which antipodal points are identified. A projective space of dimension 1 is a projective line, and a projective space of dimension 2 is a projective plane. Projective spaces are widely used in geometry, as allowing simpler statements and simpler proofs. For example, in affine geometry, two distinct lines in a plane intersect in at most one point, while, in projective geometry, they intersect in exactly one point. Also, there is only one class of conic sections, which can be distinguished only by their intersections with the line at infinity: two intersection points for hyperbolas; one for the parabola, which is tangent to the line at infinity; and no real intersection point of ellipses. In topology, and more specifically in manifold theory, projective spaces play a fundamental role, being typical examples of non-orientable manifolds. (Wikipedia).

Projective space
Video thumbnail

algebraic geometry 15 Projective space

This lecture is part of an online algebraic geometry course, based on chapter I of "Algebraic geometry" by Hartshorne. It introduces projective space and describes the synthetic and analytic approaches to projective geometry

From playlist Algebraic geometry I: Varieties

Video thumbnail

Introduction to Projective Geometry (Part 1)

The first video in a series on projective geometry. We discuss the motivation for studying projective planes, and list the axioms of affine planes.

From playlist Introduction to Projective Geometry

Video thumbnail

The circle and projective homogeneous coordinates | Universal Hyperbolic Geometry 7a | NJ Wildberger

Universal hyperbolic geometry is based on projective geometry. This video introduces this important subject, which these days is sadly absent from most undergrad/college curriculums. We adopt the 19th century view of a projective space as the space of one-dimensional subspaces of an affine

From playlist Universal Hyperbolic Geometry

Video thumbnail

The circle and projective homogeneous coordinates (cont.) | Universal Hyperbolic Geometry 7b

Universal hyperbolic geometry is based on projective geometry. This video introduces this important subject, which these days is sadly absent from most undergrad/college curriculums. We adopt the 19th century view of a projective space as the space of one-dimensional subspaces of an affine

From playlist Universal Hyperbolic Geometry

Video thumbnail

Projective view of conics and quadrics | Differential Geometry 9 | NJ Wildberger

In this video we introduce projective geometry into the study of conics and quadrics. Our point of view follows Mobius and Plucker: the projective plane is considered as the space of one-dimensional subspaces of a three dimensional vector space, or in other words lines through the origin.

From playlist Differential Geometry

Video thumbnail

Introduction to Projective Geometry (Part 2)

The second video in a series about projective geometry. We list the axioms for projective planes, give an examle of a projective plane with finitely many points, and define the real projective plane.

From playlist Introduction to Projective Geometry

Video thumbnail

Projective geometry | Math History | NJ Wildberger

Projective geometry began with the work of Pappus, but was developed primarily by Desargues, with an important contribution by Pascal. Projective geometry is the geometry of the straightedge, and it is the simplest and most fundamental geometry. We describe the important insights of the 19

From playlist MathHistory: A course in the History of Mathematics

Video thumbnail

Introduction to Projective Geometry (Part 3)

At long last! I'm rambling on about projective space again. Will it last? Who knows!?

From playlist Introduction to Projective Geometry

Video thumbnail

What is a Vector Space? (Abstract Algebra)

Vector spaces are one of the fundamental objects you study in abstract algebra. They are a significant generalization of the 2- and 3-dimensional vectors you study in science. In this lesson we talk about the definition of a vector space and give a few surprising examples. Be sure to su

From playlist Abstract Algebra

Video thumbnail

An Intuitive Introduction to Projective Geometry Using Linear Algebra

This is an area of math that I've wanted to talk about for a long time, especially since I have found how projective geometry can be used to formulate Euclidean, spherical, and hyperbolic geometries, and a possible (and hopefully plausible) way projective geometry (specifically the model t

From playlist Summer of Math Exposition 2 videos

Video thumbnail

algebraic geometry 21 Projective space bundles

This lecture is part of an online algebraic geometry course, based on chapter I of "Algebraic geometry" by Hartshorne. It covers projective space bundles, with Hirzebruch surfaces and scrolls as examples. It also includes a brief discussion of abstract varieties. Typo: in the definition o

From playlist Algebraic geometry I: Varieties

Video thumbnail

Schemes 41: Morphisms to projective space

This lecture is part of an online course on algebraic geometry based on chapter II of "algebraic geometry" by Hartshorne. We discuss morphisms of a scheme to projective space, showing that they correspond to a line bundle with a set of sections generating it.

From playlist Algebraic geometry II: Schemes

Video thumbnail

15. Projections onto Subspaces

MIT 18.06 Linear Algebra, Spring 2005 Instructor: Gilbert Strang View the complete course: http://ocw.mit.edu/18-06S05 YouTube Playlist: https://www.youtube.com/playlist?list=PLE7DDD91010BC51F8 15. Projections onto Subspaces License: Creative Commons BY-NC-SA More information at https://

From playlist MIT 18.06 Linear Algebra, Spring 2005

Video thumbnail

What is a Manifold? Lesson 12: Fiber Bundles - Formal Description

This is a long lesson, but it is not full of rigorous proofs, it is just a formal definition. Please let me know where the exposition is unclear. I din't quite get through the idea of the structure group of a fiber bundle fully, but I introduced it. The examples in the next lesson will h

From playlist What is a Manifold?

Video thumbnail

Tensor Calculus Lecture 9a: The Equations of Surface and the Shift Tensor

This course will eventually continue on Patreon at http://bit.ly/PavelPatreon Textbook: http://bit.ly/ITCYTNew Errata: http://bit.ly/ITAErrata McConnell's classic: http://bit.ly/MCTensors Table of Contents of http://bit.ly/ITCYTNew Rules of the Game Coordinate Systems and the Role of Te

From playlist Introduction to Tensor Calculus

Video thumbnail

Projective structures on Riemann surfaces and their monodromy by Subhojoy Gupta

Higgs bundles URL: http://www.icts.res.in/program/hb2016 DATES: Monday 21 Mar, 2016 - Friday 01 Apr, 2016 VENUE : Madhava Lecture Hall, ICTS Bangalore DESCRIPTION: Higgs bundles arise as solutions to noncompact analog of the Yang-Mills equation. Hitchin showed that irreducible solutio

From playlist Higgs Bundles

Video thumbnail

Isometry groups of the projective line (I) | Rational Geometry Math Foundations 138 | NJ Wildberger

The projective line can be given a Euclidean structure, just as the affine line can, but it is a bit more complicated. The algebraic structure of this projective line supports some symmetries. Symmetry in mathematics is often most efficiently encoded with the idea of a group--a technical t

From playlist Math Foundations

Related pages

Proj construction | If and only if | Fundamental theorem of algebra | Vector space | Zariski topology | Topology | Éléments de géométrie algébrique | Alexander Grothendieck | Topological vector space | General linear group | Genus–degree formula | Projective line | Equivalence class | Projective linear group | Dual space | Wedderburn's little theorem | Real number | Euclidean space | Projective line over a ring | Möbius transformation | Algebraic curve | Affine space | Analytic function | Complex number | Elliptic curve | Plane (geometry) | Antipodal point | Birational geometry | Linear subspace | Finite field | Desargues's theorem | Homeomorphism | Lattice (order) | Synthetic geometry | Riemann sphere | Ample line bundle | Quotient group | Algebraic set | Linear map | Morphism of algebraic varieties | Morphism | Analytic manifold | Scheme (mathematics) | Equivalence relation | Singular point of a curve | Geometry | Projective transformation | Space (mathematics) | Veblen–Young theorem | Compact element | Bézout's theorem | Bruck–Ryser–Chowla theorem | Quotient set | Complete quadrangle | Linear algebra | Division ring | Ellipse | Automorphism | Unit sphere | Affine geometry | Homogeneous polynomial | CW complex | Fano plane | Identity function | Projective variety | Non-Desarguesian plane | Incidence structure | Disjoint union | Real projective space | Mathematics | Algebraic geometry | Geometric algebra | Compact space | Hyperbola | Manifold | Perspective (graphical) | Atlas (topology) | Projective geometry | Subspace topology | Conic section | PG(3,2) | Oswald Veblen | Topological space | Projectivization | Complemented lattice | Severi–Brauer variety | Modular lattice | Up to | Group (mathematics) | Isomorphism | Desarguesian plane | Grassmannian | Hyperplane | Parabola | Homogeneous coordinates | Point (geometry) | Field (mathematics) | Ring (mathematics) | Square-free polynomial | Pappus's hexagon theorem | Projective representation | Moduli space | Pinhole camera model | Projective plane | Quaternionic projective space | Weighted projective space | Complex projective space | Toric variety