Analytic number theory | Group theory | Elliptic curves

Elliptic curve

In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point O. An elliptic curve is defined over a field K and describes points in K2, the Cartesian product of K with itself. If the field's characteristic is different from 2 and 3, then the curve can be described as a plane algebraic curve which consists of solutions (x, y) for: for some coefficients a and b in K. The curve is required to be non-singular, which means that the curve has no cusps or self-intersections. (This is equivalent to the condition 4a3 + 27b2 ≠ 0, that is, being square-free in x.) It is always understood that the curve is really sitting in the projective plane, with the point O being the unique point at infinity. Many sources define an elliptic curve to be simply a curve given by an equation of this form. (When the coefficient field has characteristic 2 or 3, the above equation is not quite general enough to include all non-singular cubic curves; see below.) An elliptic curve is an abelian variety – that is, it has a group law defined algebraically, with respect to which it is an abelian group – and O serves as the identity element. If y2 = P(x), where P is any polynomial of degree three in x with no repeated roots, the solution set is a nonsingular plane curve of genus one, an elliptic curve. If P has degree four and is square-free this equation again describes a plane curve of genus one; however, it has no natural choice of identity element. More generally, any algebraic curve of genus one, for example the intersection of two quadric surfaces embedded in three-dimensional projective space, is called an elliptic curve, provided that it is equipped with a marked point to act as the identity. Using the theory of elliptic functions, it can be shown that elliptic curves defined over the complex numbers correspond to embeddings of the torus into the complex projective plane. The torus is also an abelian group, and this correspondence is also a group isomorphism. Elliptic curves are especially important in number theory, and constitute a major area of current research; for example, they were used in Andrew Wiles's proof of Fermat's Last Theorem. They also find applications in elliptic curve cryptography (ECC) and integer factorization. An elliptic curve is not an ellipse in the sense of a projective conic, which has genus zero: see elliptic integral for the origin of the term. However, there is a natural representation of real elliptic curves with shape invariant j ≥ 1 as ellipses in the hyperbolic plane . Specifically, the intersections of the Minkowski hyperboloid with quadric surfaces characterized by a certain constant-angle property produce the Steiner ellipses in (generated by orientation-preserving collineations). Further, the orthogonal trajectories of these ellipses comprise the elliptic curves with j ≤ 1, and any ellipse in described as a locus relative to two foci is uniquely the elliptic curve sum of two Steiner ellipses, obtained by adding the pairs of intersections on each orthogonal trajectory. Here, the vertex of the hyperboloid serves as the identity on each trajectory curve. Topologically, a complex elliptic curve is a torus, while a complex ellipse is a sphere. (Wikipedia).

Elliptic curve
Video thumbnail

What is... an elliptic curve?

In this talk, we will define elliptic curves and, more importantly, we will try to motivate why they are central to modern number theory. Elliptic curves are ubiquitous not only in number theory, but also in algebraic geometry, complex analysis, cryptography, physics, and beyond. They were

From playlist An Introduction to the Arithmetic of Elliptic Curves

Video thumbnail

Elliptic Curves - Lecture 6a - Ramification (continued)

This video is part of a graduate course on elliptic curves that I taught at UConn in Spring 2021. The course is an introduction to the theory of elliptic curves. More information about the course can be found at the course website: https://alozano.clas.uconn.edu/math5020-elliptic-curves/

From playlist An Introduction to the Arithmetic of Elliptic Curves

Video thumbnail

Elliptic curves: point at infinity in the projective plane

This video depicts point addition and doubling on elliptic curve in simple Weierstrass form in the projective plane depicted using stereographic projection where the point at infinity can actually be seen. Explanation is in the accompanying article https://trustica.cz/2018/04/05/elliptic-

From playlist Elliptic Curves - Number Theory and Applications

Video thumbnail

Elliptic Curves - Lecture 27b - Selmer and Sha (definitions)

This video is part of a graduate course on elliptic curves that I taught at UConn in Spring 2021. The course is an introduction to the theory of elliptic curves. More information about the course can be found at the course website: https://alozano.clas.uconn.edu/math5020-elliptic-curves/

From playlist An Introduction to the Arithmetic of Elliptic Curves

Video thumbnail

Elliptic Curves - Lecture 8b - The (geometric) group law

This video is part of a graduate course on elliptic curves that I taught at UConn in Spring 2021. The course is an introduction to the theory of elliptic curves. More information about the course can be found at the course website: https://alozano.clas.uconn.edu/math5020-elliptic-curves/

From playlist An Introduction to the Arithmetic of Elliptic Curves

Video thumbnail

Elliptic Curves - Lecture 4a - Varieties, function fields, dimension

This video is part of a graduate course on elliptic curves that I taught at UConn in Spring 2021. The course is an introduction to the theory of elliptic curves. More information about the course can be found at the course website: https://alozano.clas.uconn.edu/math5020-elliptic-curves/

From playlist An Introduction to the Arithmetic of Elliptic Curves

Video thumbnail

Elliptic Curves: Good books to get started

A few books for getting started in the subject of Elliptic Curves, each with a different perspective. I give detailed overviews and my personal take on each book. 0:00 Intro 0:41 McKean and Moll, Elliptic Curves: Function Theory, Geometry, Arithmetic 10:14 Silverman, The Arithmetic of El

From playlist Math

Video thumbnail

Lenstras Algorithm

For more cryptography, subscribe @JeffSuzukiPolymath

From playlist Elliptic Curves - Number Theory and Applications

Video thumbnail

Elliptic Curves - Lecture 5a - Order of vanishing

This video is part of a graduate course on elliptic curves that I taught at UConn in Spring 2021. The course is an introduction to the theory of elliptic curves. More information about the course can be found at the course website: https://alozano.clas.uconn.edu/math5020-elliptic-curves/

From playlist An Introduction to the Arithmetic of Elliptic Curves

Video thumbnail

"From Diophantus to Bitcoin: Why Are Elliptic Curves Everywhere?" by Alvaro Lozano-Robledo

This talk was organized by the Number Theory Unit of the Center for Advanced Mathematical Sciences at the American University of Beirut, on November 1st, 2022. Abstract: Elliptic curves are ubiquitous in number theory, algebraic geometry, complex analysis, cryptography, physics, and beyo

From playlist Math Talks

Video thumbnail

Abbey Bourdon : Minimal torsion curves in geometric isogeny classes

CONFERENCE Recording during the thematic meeting : "COUNT, COmputations and their Uses in Number Theory" the March 02, 2023 at the Centre International de Rencontres Mathématiques (Marseille, France) Filmmaker: Guillaume Hennenfent Find this video and other talks given by worldwide math

From playlist JEAN MORLET CHAIR

Video thumbnail

Alvaro Lozano-Robledo, The distribution of ranks of elliptic curves and the minimalist conjecture

VaNTAGe seminar, on Sep 29, 2020 License: CC-BY-NC-SA. An updated version of the slides that corrects a few minor issues can be found at https://math.mit.edu/~drew/vantage/LozanoRobledoSlides.pdf

From playlist Math Talks

Video thumbnail

CTNT 2020 - A virtual tour of the LMFDB: the L-functions and Modular Forms DataBase

This video is part of a series of videos on "Computations in Number Theory Research" that are offered as a mini-course during CTNT 2020. In this video, we take a virtual tour of the LMFDB - the L-functions and modular forms database. Please click on "show more" to see the links below. Abo

From playlist CTNT 2020 - Computations in Number Theory Research

Video thumbnail

Birch Swinnerton-Dyer conjecture: Introduction

This talk is an graduate-level introduction to the Birch Swinnerton-Dyer conjecture in number theory, relating the rank of the Mordell group of a rational elliptic curve to the order of the zero of its L series at s=1. We explain the meaning of these terms, describe the motivation for the

From playlist Math talks

Video thumbnail

CTNT 2018 - "Arithmetic Statistics" (Lecture 4) by Álvaro Lozano-Robledo

This is lecture 4 of a mini-course on "Arithmetic Statistics", taught by Álvaro Lozano-Robledo, during CTNT 2018, the Connecticut Summer School in Number Theory. For more information about CTNT and other resources and notes, see https://ctnt-summer.math.uconn.edu/

From playlist CTNT 2018 - "Arithmetic Statistics" by Álvaro Lozano-Robledo

Video thumbnail

Wei Ho, Integral points on elliptic curves

VaNTAGe seminar, on Oct 13, 2020 License: CC-BY-NC-SA. Closed captions provided by Rachana Madhukara.

From playlist Rational points on elliptic curves

Video thumbnail

Elliptic Curves - Lecture 4b - Singularities, morphisms

This video is part of a graduate course on elliptic curves that I taught at UConn in Spring 2021. The course is an introduction to the theory of elliptic curves. More information about the course can be found at the course website: https://alozano.clas.uconn.edu/math5020-elliptic-curves/

From playlist An Introduction to the Arithmetic of Elliptic Curves

Related pages

Rational function | Euclidean algorithm | Elliptic-curve Diffie–Hellman | Lenstra elliptic-curve factorization | Uniformization theorem | Mordell–Weil theorem | Lattice (group) | Inflection point | Ring of integers | Finitely generated group | Modular form | Hasse–Weil zeta function | Hessian form of an elliptic curve | Weierstrass elliptic function | Supersingular isogeny key exchange | Cryptography | Discriminant | Field extension | Riemann surface | Arithmetic–geometric mean | Discrete logarithm | Elliptic surface | Real number | Sphere | Birch and Swinnerton-Dyer conjecture | Analytic continuation | Prime number | Dirichlet L-function | Edwards curve | Subgroup | Affine space | Algebraic curve | Complex number | Abelian group | Schoof's algorithm | Square-free integer | Abelian variety | Hasse's theorem on elliptic curves | Fundamental pair of periods | Integer factorization | Elliptic function | Finite field | Riemann hypothesis | Elliptic Curve Digital Signature Algorithm | Absolute convergence | Level structure (algebraic geometry) | Height function | Moduli stack of elliptic curves | Group isomorphism | Algebra | Stella octangula number | Quotient group | Arithmetic dynamics | Torus | Local zeta function | Elliptic algebra | Cartesian product | J-invariant | Complex conjugate | Singular point of a curve | Tunnell's theorem | Dual EC DRBG | Geometry | Smoothness | Doubling-oriented Doche–Icart–Kohel curve | Transcendental number | Algebraic closure | Ellipse | Euler product | Isolated point | Logarithm | Modular lambda function | Torsion subgroup | Cubic plane curve | Point at infinity | Projective variety | Serge Lang | Generalized Riemann hypothesis | Modular curve | Nagell–Lutz theorem | Sato–Tate conjecture | Characteristic (algebra) | Jacobian curve | Mathematics | Hesse configuration | Algebraic geometry | Isogeny | Wiles's proof of Fermat's Last Theorem | EdDSA | Rational point | Dedekind eta function | Compact space | Quadric (algebraic geometry) | Rank of an abelian group | Fundamental theorem of finitely generated abelian groups | Étale cohomology | Generating function | Modular arithmetic | Riemann zeta function | Order (group theory) | Elliptic integral | Absolute value | Congruent number | Functional equation | Factorization | Complex projective plane | Twisted Hessian curves | Up to | Group (mathematics) | Conductor of an elliptic curve | Counting points on elliptic curves | Genus (mathematics) | Tripling-oriented Doche–Icart–Kohel curve | Homogeneous coordinates | Montgomery curve | Field (mathematics) | Twisted Edwards curve | Cusp (singularity) | Riemann–Hurwitz formula | Square-free polynomial | Number theory | J-line | Modularity theorem | Projective plane | Algorithm | Degree of a field extension | Plane curve