UsefulLinks
Chemistry
Applied and Interdisciplinary Chemistry
Biophysical Chemistry
1. Introduction to Biophysical Chemistry
2. Biological Molecules as Physical Systems
3. Water and the Biological Environment
4. Fundamental Physical Forces
5. Thermodynamics of Biological Systems
6. Chemical Kinetics and Dynamics
7. Macromolecular Structure
8. Spectroscopic Methods
9. Structural Determination Methods
10. Hydrodynamics and Transport
11. Molecular Interactions and Binding
12. Statistical Mechanics Applications
6.
Chemical Kinetics and Dynamics
6.1.
Reaction Kinetics Fundamentals
6.1.1.
Rate Definitions
6.1.2.
Rate Laws
6.1.3.
Reaction Order
6.1.4.
Rate Constants
6.1.5.
Integrated Rate Equations
6.2.
Temperature Effects
6.2.1.
Arrhenius Equation
6.2.2.
Activation Energy
6.2.3.
Pre-exponential Factor
6.2.4.
Transition State Theory
6.3.
Complex Reaction Mechanisms
6.3.1.
Elementary Steps
6.3.2.
Steady-State Approximation
6.3.3.
Pre-equilibrium Approximation
6.3.4.
Chain Reactions
6.4.
Enzyme Kinetics
6.4.1.
Michaelis-Menten Mechanism
6.4.1.1.
Derivation
6.4.1.2.
Assumptions
6.4.1.3.
Parameter Interpretation
6.4.2.
Kinetic Parameters
6.4.2.1.
Michaelis Constant
6.4.2.2.
Turnover Number
6.4.2.3.
Catalytic Efficiency
6.4.3.
Inhibition Mechanisms
6.4.3.1.
Competitive Inhibition
6.4.3.2.
Uncompetitive Inhibition
6.4.3.3.
Noncompetitive Inhibition
6.4.3.4.
Mixed Inhibition
6.4.4.
Allosteric Enzymes
6.4.4.1.
Sigmoidal Kinetics
6.4.4.2.
Hill Equation
6.4.4.3.
Regulatory Mechanisms
6.5.
Fast Kinetics Methods
6.5.1.
Relaxation Techniques
6.5.1.1.
Temperature Jump
6.5.1.2.
Pressure Jump
6.5.1.3.
pH Jump
6.5.2.
Flow Methods
6.5.2.1.
Stopped-Flow
6.5.2.2.
Continuous-Flow
6.5.2.3.
Quenched-Flow
6.5.3.
Flash Photolysis
6.5.3.1.
Laser Flash Techniques
6.5.3.2.
Time-Resolved Spectroscopy
6.6.
Single-Molecule Kinetics
6.6.1.
Stochastic Processes
6.6.2.
Dwell Time Analysis
6.6.3.
Fluctuation Theorems
6.6.4.
Force-Dependent Kinetics
Previous
5. Thermodynamics of Biological Systems
Go to top
Next
7. Macromolecular Structure