- Affine geometry
- >
- Convex geometry
- >
- Polytopes
- >
- Honeycombs (geometry)

- Classical geometry
- >
- Euclidean geometry
- >
- Euclidean solid geometry
- >
- Honeycombs (geometry)

- Convex geometry
- >
- Polyhedra
- >
- Tessellation
- >
- Honeycombs (geometry)

- Convex geometry
- >
- Polytopes
- >
- Tessellation
- >
- Honeycombs (geometry)

- Discrete mathematics
- >
- Discrete geometry
- >
- Tessellation
- >
- Honeycombs (geometry)

- Elementary geometry
- >
- Euclidean plane geometry
- >
- Tessellation
- >
- Honeycombs (geometry)

- Euclidean geometry
- >
- Euclidean plane geometry
- >
- Tessellation
- >
- Honeycombs (geometry)

- Euclidean geometry
- >
- Multi-dimensional geometry
- >
- Polytopes
- >
- Honeycombs (geometry)

- Euclidean solid geometry
- >
- Polyhedra
- >
- Tessellation
- >
- Honeycombs (geometry)

- Fields of geometry
- >
- Convex geometry
- >
- Polytopes
- >
- Honeycombs (geometry)

- Fields of geometry
- >
- Discrete geometry
- >
- Tessellation
- >
- Honeycombs (geometry)

- Fields of geometry
- >
- Multi-dimensional geometry
- >
- Polytopes
- >
- Honeycombs (geometry)

- General topology
- >
- Topological spaces
- >
- Polytopes
- >
- Honeycombs (geometry)

- Geometric objects
- >
- Geometric shapes
- >
- Polytopes
- >
- Honeycombs (geometry)

- Geometric shapes
- >
- Polytopes
- >
- Tessellation
- >
- Honeycombs (geometry)

- Geometry
- >
- Symmetry
- >
- Tessellation
- >
- Honeycombs (geometry)

- Linear algebra
- >
- Convex geometry
- >
- Polytopes
- >
- Honeycombs (geometry)

- Linear programming
- >
- Polyhedra
- >
- Tessellation
- >
- Honeycombs (geometry)

- Mathematical objects
- >
- Geometric shapes
- >
- Polytopes
- >
- Honeycombs (geometry)

- Mathematical structures
- >
- Topological spaces
- >
- Polytopes
- >
- Honeycombs (geometry)

- Mathematics
- >
- Mathematics and art
- >
- Tessellation
- >
- Honeycombs (geometry)

- Multi-dimensional geometry
- >
- Polytopes
- >
- Tessellation
- >
- Honeycombs (geometry)

- Polytopes
- >
- Polyhedra
- >
- Tessellation
- >
- Honeycombs (geometry)

- Topological spaces
- >
- Polytopes
- >
- Tessellation
- >
- Honeycombs (geometry)

- Topology
- >
- Topological spaces
- >
- Polytopes
- >
- Honeycombs (geometry)

Weaire–Phelan structure

In geometry, the Weaire–Phelan structure is a three-dimensional structure representing an idealised foam of equal-sized bubbles, with two different shapes. In 1993, Denis Weaire and Robert Phelan foun

Order-7 cubic honeycomb

In the geometry of hyperbolic 3-space, the order-7 cubic honeycomb is a regular space-filling tessellation (or honeycomb). With Schläfli symbol {4,3,7}, it has seven cubes {4,3} around each edge. All

Order-4 dodecahedral honeycomb

In hyperbolic geometry, the order-4 dodecahedral honeycomb is one of four compact regular space-filling tessellations (or honeycombs) of hyperbolic 3-space. With Schläfli symbol {5,3,4}, it has four d

Order-6-4 square honeycomb

In the geometry of hyperbolic 3-space, the order-6-4 square honeycomb (or 4,6,4 honeycomb) a regular space-filling tessellation (or honeycomb) with Schläfli symbol {4,6,4}.

Order-8-3 triangular honeycomb

In the geometry of hyperbolic 3-space, the order-8-3 triangular honeycomb (or 3,8,3 honeycomb) is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,8,3}.

Order-5-3 square honeycomb

In the geometry of hyperbolic 3-space, the order-5-3 square honeycomb or 4,5,3 honeycomb a regular space-filling tessellation (or honeycomb). Each infinite cell consists of a pentagonal tiling whose v

Order-5 dodecahedral honeycomb

In hyperbolic geometry, the order-5 dodecahedral honeycomb is one of four compact regular space-filling tessellations (or honeycombs) in hyperbolic 3-space. With Schläfli symbol {5,3,5}, it has five d

Tetrahedral-octahedral honeycomb

The tetrahedral-octahedral honeycomb, alternated cubic honeycomb is a quasiregular space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of alternating regular octahedra and t

Rectified 24-cell honeycomb

In four-dimensional Euclidean geometry, the rectified 24-cell honeycomb is a uniform space-filling honeycomb. It is constructed by a rectification of the regular 24-cell honeycomb, containing tesserac

Runcicantitruncated tesseractic honeycomb

In four-dimensional Euclidean geometry, the runcicantitruncated tesseractic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 4-space.

Stellated rhombic dodecahedral honeycomb

The stellated rhombic dodecahedral honeycomb is a space-filling tessellation (or honeycomb) in Euclidean 3-space made up of copies of stellated rhombic dodecahedron cells. Six stellated rhombic dodeca

Steric tesseractic honeycomb

In four-dimensional Euclidean geometry, the steric tesseractic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 4-space.

Paracompact uniform honeycombs

In geometry, uniform honeycombs in hyperbolic space are tessellations of convex uniform polyhedron cells. In 3-dimensional hyperbolic space there are 23 Coxeter group families of paracompact uniform h

Great 120-cell honeycomb

In the geometry of hyperbolic 4-space, the great 120-cell honeycomb is one of four regular star-honeycombs. With Schläfli symbol {5,5/2,5,3}, it has three great 120-cells around each face. It is dual

Dodecahedral-icosahedral honeycomb

In the geometry of hyperbolic 3-space, the dodecahedral-icosahedral beehouse is a uniform beehouse, constructed from dodecahedron, icosahedron, and icosidodecahedron cells, in a rhombicosidodecahedron

Order-6 tetrahedral honeycomb

In hyperbolic 3-space, the order-6 tetrahedral honeycomb is a paracompact regular space-filling tessellation (or honeycomb). It is paracompact because it has vertex figures composed of an infinite num

Order-6-4 triangular honeycomb

In the geometry of hyperbolic 3-space, the order-6-4 triangular honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,6,4}.

Runcinated 24-cell honeycomb

In four-dimensional Euclidean geometry, the runcinated 24-cell honeycomb is a uniform space-filling honeycomb. It can be seen as a runcination of the regular 24-cell honeycomb, containing runcinated 2

Tesseractic honeycomb

In four-dimensional euclidean geometry, the tesseractic honeycomb is one of the three regular space-filling tessellations (or honeycombs), represented by Schläfli symbol {4,3,3,4}, and constructed by

Steriruncicantic tesseractic honeycomb

In four-dimensional Euclidean geometry, the steriruncicantic tesseractic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 4-space.

Order-4 24-cell honeycomb

In the geometry of hyperbolic 4-space, the order-4 24-cell honeycomb is one of two paracompact regular space-filling tessellations (or honeycombs). It is called paracompact because it has infinite ver

Order-5 icosahedral 120-cell honeycomb

In the geometry of hyperbolic 4-space, the order-5 icosahedral 120-cell honeycomb is one of four regular star-honeycombs. With Schläfli symbol {3,5,5/2,5}, it has five icosahedral 120-cells around eac

Order-4-5 square honeycomb

In the geometry of hyperbolic 3-space, the order-4-5 square honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {4,4,5}. It has five square tiling {4,4} around each e

Uniform honeycomb

In geometry, a uniform honeycomb or uniform tessellation or infinite uniform polytope, is a vertex-transitive honeycomb made from uniform polytope facets. All of its vertices are identical and there i

Order-4 square hosohedral honeycomb

In geometry, the order-4 square hosohedral honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {2,4,4}. It has 4 square hosohedra {2,4} around each edge. In other wor

Cubic-octahedral honeycomb

In the geometry of hyperbolic 3-space, the cubic-octahedral honeycomb is a compact uniform honeycomb, constructed from cube, octahedron, and cuboctahedron cells, in a rhombicuboctahedron vertex figure

Bitruncated 24-cell honeycomb

In four-dimensional Euclidean geometry, the bitruncated 24-cell honeycomb is a uniform space-filling honeycomb. It can be seen as a bitruncation of the regular 24-cell honeycomb, constructed by trunca

Rhombic dodecahedral honeycomb

The rhombic dodecahedral honeycomb (also dodecahedrille) is a space-filling tessellation (or honeycomb) in Euclidean 3-space. It is the Voronoi diagram of the face-centered cubic sphere-packing, which

Cyclotruncated 6-simplex honeycomb

In six-dimensional Euclidean geometry, the cyclotruncated 6-simplex honeycomb is a space-filling tessellation (or honeycomb). The tessellation fills space by 6-simplex, truncated 6-simplex, bitruncate

Runcinated 16-cell honeycomb

In four-dimensional Euclidean geometry, the runcinated 16-cell honeycomb is a uniform space-filling honeycomb. It can be seen as a runcination of the regular 16-cell honeycomb, containing Rectified 24

Snub 24-cell honeycomb

In four-dimensional Euclidean geometry, the snub 24-cell honeycomb, or snub icositetrachoric honeycomb is a uniform space-filling tessellation (or honeycomb) by snub 24-cells, 16-cells, and 5-cells. I

Omnitruncated 6-simplex honeycomb

In six-dimensional Euclidean geometry, the omnitruncated 6-simplex honeycomb is a space-filling tessellation (or honeycomb). It is composed entirely of omnitruncated 6-simplex facets. The facets of al

7-simplex honeycomb

In seven-dimensional Euclidean geometry, the 7-simplex honeycomb is a space-filling tessellation (or honeycomb). The tessellation fills space by 7-simplex, rectified 7-simplex, birectified 7-simplex,

Bitruncated tesseractic honeycomb

In four-dimensional Euclidean geometry, the bitruncated tesseractic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 4-space. It is constructed by a bitruncation of a tess

Rectified tesseractic honeycomb

In four-dimensional Euclidean geometry, the rectified tesseractic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 4-space. It is constructed by a rectification of a tesse

Triangular prismatic honeycomb

The triangular prismatic honeycomb or triangular prismatic cellulation is a space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed entirely of triangular prisms. It is construc

Cantellated 24-cell honeycomb

In four-dimensional Euclidean geometry, the cantellated 24-cell honeycomb is a uniform space-filling honeycomb. It can be seen as a cantellation of the regular 24-cell honeycomb, containing rectified

Runcicantellated tesseractic honeycomb

In four-dimensional Euclidean geometry, the runcicantellated tesseractic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 4-space.

6-simplex honeycomb

In six-dimensional Euclidean geometry, the 6-simplex honeycomb is a space-filling tessellation (or honeycomb). The tessellation fills space by 6-simplex, rectified 6-simplex, and birectified 6-simplex

Order-4-4 pentagonal honeycomb

In the geometry of hyperbolic 3-space, the order-4-4 pentagonal honeycomb a regular space-filling tessellation (or honeycomb). Each infinite cell consists of a pentagonal tiling whose vertices lie on

Truncated 24-cell honeycomb

In four-dimensional Euclidean geometry, the truncated 24-cell honeycomb is a uniform space-filling honeycomb. It can be seen as a truncation of the regular 24-cell honeycomb, containing tesseract and

Heptagonal tiling honeycomb

In the geometry of hyperbolic 3-space, the heptagonal tiling honeycomb or 7,3,3 honeycomb a regular space-filling tessellation (or honeycomb). Each infinite cell consists of a heptagonal tiling whose

Birectified 16-cell honeycomb

In four-dimensional Euclidean geometry, the birectified 16-cell honeycomb (or runcic tesseractic honeycomb) is a uniform space-filling tessellation (or honeycomb) in Euclidean 4-space.

Uniform honeycombs in hyperbolic space

In hyperbolic geometry, a uniform honeycomb in hyperbolic space is a uniform tessellation of uniform polyhedral cells. In 3-dimensional hyperbolic space there are nine Coxeter group families of compac

Square tiling honeycomb

In the geometry of hyperbolic 3-space, the square tiling honeycomb is one of 11 paracompact regular honeycombs. It is called paracompact because it has infinite cells, whose vertices exist on horosphe

16-cell honeycomb

In four-dimensional Euclidean geometry, the 16-cell honeycomb is one of the three regular space-filling tessellations (or honeycombs), represented by Schläfli symbol {3,3,4,3}, and constructed by a 4-

Cubic-icosahedral honeycomb

In the geometry of hyperbolic 3-space, the cubic-icosahedral honeycomb is a compact uniform honeycomb, constructed from icosahedron, cube, and cuboctahedron cells, in an icosidodecahedron vertex figur

Quarter 6-cubic honeycomb

In six-dimensional Euclidean geometry, the quarter 6-cubic honeycomb is a uniform space-filling tessellation (or honeycomb). It has half the vertices of the 6-demicubic honeycomb, and a quarter of the

24-cell honeycomb honeycomb

In the geometry of hyperbolic 5-space, the 24-cell honeycomb honeycomb is one of five paracompact regular space-filling tessellations (or honeycombs). It is called paracompact because it has infinite

5-cell honeycomb

In four-dimensional Euclidean geometry, the 4-simplex honeycomb, 5-cell honeycomb or pentachoric-dispentachoric honeycomb is a space-filling tessellation honeycomb. It is composed of 5-cells and recti

Truncated tesseractic honeycomb

In four-dimensional Euclidean geometry, the truncated tesseractic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 4-space. It is constructed by a truncation of a tesserac

Cyclotruncated 7-simplex honeycomb

In seven-dimensional Euclidean geometry, the cyclotruncated 7-simplex honeycomb is a space-filling tessellation (or honeycomb). The tessellation fills space by 7-simplex, truncated 7-simplex, bitrunca

Omnitruncated 7-simplex honeycomb

In seven-dimensional Euclidean geometry, the omnitruncated 7-simplex honeycomb is a space-filling tessellation (or honeycomb). It is composed entirely of omnitruncated 7-simplex facets. The facets of

6-demicubic honeycomb

The 6-demicubic honeycomb or demihexeractic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 6-space. It is constructed as an alternation of the regular 6-cube honeycomb.

Stericantitruncated 16-cell honeycomb

In four-dimensional Euclidean geometry, the stericantitruncated 16-cell honeycomb is a uniform space-filling honeycomb.

Honeycomb (geometry)

In geometry, a honeycomb is a space filling or close packing of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellat

Quarter cubic honeycomb

The quarter cubic honeycomb, quarter cubic cellulation or bitruncated alternated cubic honeycomb is a space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of tetrahedra and t

Cyclotruncated simplectic honeycomb

In geometry, the cyclotruncated simplectic honeycomb (or cyclotruncated n-simplex honeycomb) is a dimensional infinite series of honeycombs, based on the symmetry of the affine Coxeter group. It is gi

Cyclotruncated 8-simplex honeycomb

In eight-dimensional Euclidean geometry, the cyclotruncated 8-simplex honeycomb is a space-filling tessellation (or honeycomb). The tessellation fills space by 8-simplex, truncated 8-simplex, bitrunca

Order-4 24-cell honeycomb honeycomb

In the geometry of hyperbolic 5-space, the order-4 24-cell honeycomb honeycomb is one of five paracompact regular space-filling tessellations (or honeycombs). It is called paracompact because it has i

Order-5 hexagonal tiling honeycomb

In the field of hyperbolic geometry, the order-5 hexagonal tiling honeycomb arises as one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells

Voronoi tessellation

No description available.

Order-5 120-cell honeycomb

In the geometry of hyperbolic 4-space, the order-5 120-cell honeycomb is one of five compact regular space-filling tessellations (or honeycombs). With Schläfli symbol {5,3,3,5}, it has five 120-cells

Order-4 octahedral honeycomb

The order-4 octahedral honeycomb is a regular paracompact honeycomb in hyperbolic 3-space. It is paracompact because it has infinite vertex figures, with all vertices as ideal points at infinity. Give

Octahedral-dodecahedral honeycomb

In the geometry of hyperbolic 3-space, the octahedron-dodecahedron honeycomb is a compact uniform honeycomb, constructed from dodecahedron, octahedron, and icosidodecahedron cells, in a rhombicuboctah

Order-5-4 square honeycomb

In the geometry of hyperbolic 3-space, the order-5-4 square honeycomb (or 4,5,4 honeycomb) a regular space-filling tessellation (or honeycomb) with Schläfli symbol {4,5,4}.

Omnitruncated simplectic honeycomb

In geometry an omnitruncated simplectic honeycomb or omnitruncated n-simplex honeycomb is an n-dimensional uniform tessellation, based on the symmetry of the affine Coxeter group. Each is composed of

Order-7 dodecahedral honeycomb

In the geometry of hyperbolic 3-space, the order-7 dodecahedral honeycomb a regular space-filling tessellation (or honeycomb).

16-cell honeycomb honeycomb

In the geometry of hyperbolic 5-space, the 16-cell honeycomb honeycomb is one of five paracompact regular space-filling tessellations (or honeycombs). It is called paracompact because it has infinite

Order-7 tetrahedral honeycomb

In the geometry of hyperbolic 3-space, the order-7 tetrahedral honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,3,7}. It has seven tetrahedra {3,3} around each

Stericated 24-cell honeycomb

In four-dimensional Euclidean geometry, the stericated 24-cell honeycomb (or stericated 16-cell honeycomb) is a uniform space-filling honeycomb. It can be seen as a sterication of the regular 24-cell

Bitruncated cubic honeycomb

The bitruncated cubic honeycomb is a space-filling tessellation (or honeycomb) in Euclidean 3-space made up of truncated octahedra (or, equivalently, bitruncated cubes). It has 4 truncated octahedra a

Order-5 5-cell honeycomb

In the geometry of hyperbolic 4-space, the order-5 5-cell honeycomb is one of five compact regular space-filling tessellations (or honeycombs). With Schläfli symbol {3,3,3,5}, it has five 5-cells arou

Cubic-square tiling honeycomb

In the geometry of hyperbolic 3-space, the cubic-square tiling honeycomb is a paracompact uniform honeycomb, constructed from cube and square tiling cells, in a rhombicuboctahedron vertex figure. It h

Alternated hexagonal tiling honeycomb

In three-dimensional hyperbolic geometry, the alternated hexagonal tiling honeycomb, h{6,3,3}, or , is a semiregular tessellation with tetrahedron and triangular tiling cells arranged in an octahedron

Cantitruncated 24-cell honeycomb

In four-dimensional Euclidean geometry, the cantitruncated 24-cell honeycomb is a uniform space-filling honeycomb. It can be seen as a cantitruncation of the regular 24-cell honeycomb, containing trun

Tetragonal disphenoid honeycomb

The tetragonal disphenoid tetrahedral honeycomb is a space-filling tessellation (or honeycomb) in Euclidean 3-space made up of identical tetragonal disphenoidal cells. Cells are face-transitive with 4

Cubic-triangular tiling honeycomb

In the geometry of hyperbolic 3-space, the cubic-triangular tiling honeycomb is a paracompact uniform honeycomb, constructed from cube, triangular tiling, and cuboctahedron cells, in a rhombitrihexago

Cubic honeycomb honeycomb

In the geometry of hyperbolic 4-space, the cubic honeycomb honeycomb is one of two paracompact regular space-filling tessellations (or honeycombs). It is called paracompact because it has infinite fac

Quarter hypercubic honeycomb

In geometry, the quarter hypercubic honeycomb (or quarter n-cubic honeycomb) is a dimensional infinite series of honeycombs, based on the hypercube honeycomb. It is given a Schläfli symbol q{4,3...3,4

Triakis truncated tetrahedral honeycomb

The triakis truncated tetrahedral honeycomb is a space-filling tessellation (or honeycomb) in Euclidean 3-space made up of triakis truncated tetrahedra. It was discovered in 1914.

5-demicubic honeycomb

The 5-demicube honeycomb (or demipenteractic honeycomb) is a uniform space-filling tessellation (or honeycomb) in Euclidean 5-space. It is constructed as an alternation of the regular 5-cube honeycomb

5-simplex honeycomb

In five-dimensional Euclidean geometry, the 5-simplex honeycomb or hexateric honeycomb is a space-filling tessellation (or honeycomb or pentacomb). Each vertex is shared by 12 5-simplexes, 30 rectifie

Steritruncated tesseractic honeycomb

In four-dimensional Euclidean geometry, the steritruncated tesseractic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 4-space.

Simplectic honeycomb

In geometry, the simplectic honeycomb (or n-simplex honeycomb) is a dimensional infinite series of honeycombs, based on the affine Coxeter group symmetry. It is represented by a Coxeter-Dynkin diagram

5-orthoplex honeycomb

In the geometry of hyperbolic 5-space, the 5-orthoplex honeycomb is one of five paracompact regular space-filling tessellations (or honeycombs). It is called paracompact because it has infinite vertex

Tetrahedral-square tiling honeycomb

In the geometry of hyperbolic 3-space, the tetrahedral-square tiling honeycomb is a paracompact uniform honeycomb, constructed from tetrahedron, cuboctahedron and square tiling cells, in a rhombicuboc

Steriruncic tesseractic honeycomb

In four-dimensional Euclidean geometry, the steriruncic tesseractic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 4-space.

7-demicubic honeycomb

The 7-demicubic honeycomb, or demihepteractic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 7-space. It is constructed as an alternation of the regular 7-cubic honeycom

Cantellated tesseractic honeycomb

In four-dimensional Euclidean geometry, the cantellated tesseractic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 4-space. It is constructed by a cantellation of a tess

Order-4 120-cell honeycomb

In the geometry of hyperbolic 4-space, the order-4 120-cell honeycomb is one of five compact regular space-filling tessellations (or honeycombs). With Schläfli symbol {5,3,3,4}, it has four 120-cells

Order-5 tesseractic honeycomb

In the geometry of hyperbolic 4-space, the order-5 tesseractic honeycomb is one of five compact regular space-filling tessellations (or honeycombs). With Schläfli symbol {4,3,3,5}, it has five 8-cells

Steritruncated 16-cell honeycomb

In four-dimensional Euclidean geometry, the steritruncated 16-cell honeycomb is a uniform space-filling honeycomb, with runcinated 24-cell, truncated 16-cell, octahedral prism, 3-6 duoprism, and trunc

Tesseractic honeycomb honeycomb

In the geometry of hyperbolic 5-space, the tesseractic honeycomb honeycomb is one of five paracompact regular space-filling tessellations (or honeycombs). It is called paracompact because it has infin

24-cell honeycomb

In four-dimensional Euclidean geometry, the 24-cell honeycomb, or icositetrachoric honeycomb is a regular space-filling tessellation (or honeycomb) of 4-dimensional Euclidean space by regular 24-cells

Order-6-3 square honeycomb

In the geometry of hyperbolic 3-space, the order-6-3 square honeycomb or 4,6,3 honeycomb is a regular space-filling tessellation (or honeycomb). Each infinite cell consists of a hexagonal tiling whose

Order-infinite-3 triangular honeycomb

In the geometry of hyperbolic 3-space, the order-infinite-3 triangular honeycomb (or 3,∞,3 honeycomb) is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,∞,3}.

Quarter 5-cubic honeycomb

In five-dimensional Euclidean geometry, the quarter 5-cubic honeycomb is a uniform space-filling tessellation (or honeycomb). It has half the vertices of the 5-demicubic honeycomb, and a quarter of th

Order-4-5 pentagonal honeycomb

In the geometry of hyperbolic 3-space, the order-4-5 pentagonal honeycomb a regular space-filling tessellation (or honeycomb) with Schläfli symbol {5,4,5}.

7-cubic honeycomb

The 7-cubic honeycomb or hepteractic honeycomb is the only regular space-filling tessellation (or honeycomb) in Euclidean 7-space. It is analogous to the square tiling of the plane and to the cubic ho

Order-5 cubic honeycomb

In hyperbolic geometry, the order-5 cubic honeycomb is one of four compact regular space-filling tessellations (or honeycombs) in hyperbolic 3-space. With Schläfli symbol {4,3,5}, it has five cubes {4

Order-3-7 heptagonal honeycomb

In the geometry of hyperbolic 3-space, the order-3-7 heptagonal honeycomb a regular space-filling tessellation (or honeycomb) with Schläfli symbol {7,3,7}.

Hypercubic honeycomb

In geometry, a hypercubic honeycomb is a family of regular honeycombs (tessellations) in n-dimensional spaces with the Schläfli symbols {4,3...3,4} and containing the symmetry of Coxeter group Rn (or

Order-3-6 heptagonal honeycomb

In the geometry of hyperbolic 3-space, the order-3-6 heptagonal honeycomb a regular space-filling tessellation (or honeycomb). Each infinite cell consists of a heptagonal tiling whose vertices lie on

Order-4 hexagonal tiling honeycomb

In the field of hyperbolic geometry, the order-4 hexagonal tiling honeycomb arises as one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells

Hexagonal tiling-triangular tiling honeycomb

In the geometry of hyperbolic 3-space, the hexagonal tiling-triangular tiling honeycomb is a paracompact uniform honeycomb, constructed from triangular tiling, hexagonal tiling, and trihexagonal tilin

Omnitruncated 5-simplex honeycomb

In five-dimensional Euclidean geometry, the omnitruncated 5-simplex honeycomb or omnitruncated hexateric honeycomb is a space-filling tessellation (or honeycomb). It is composed entirely of omnitrunca

Order-5 octahedral honeycomb

In the geometry of hyperbolic 3-space, the order-5 octahedral honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,4,5}. It has five octahedra {3,4} around each edg

Convex uniform honeycomb

In geometry, a convex uniform honeycomb is a uniform tessellation which fills three-dimensional Euclidean space with non-overlapping convex uniform polyhedral cells. Twenty-eight such honeycombs are k

Small stellated 120-cell honeycomb

In the geometry of hyperbolic 4-space, the small stellated 120-cell honeycomb is one of four regular star-honeycombs. With Schläfli symbol {5/2,5,3,3}, it has three small stellated 120-cells around ea

5-cubic honeycomb

In geometry, the 5-cubic honeycomb or penteractic honeycomb is the only regular space-filling tessellation (or honeycomb) in Euclidean 5-space. Four 5-cubes meet at each cubic cell, and it is more exp

6-cubic honeycomb

The 6-cubic honeycomb or hexeractic honeycomb is the only regular space-filling tessellation (or honeycomb) in Euclidean 6-space. It is analogous to the square tiling of the plane and to the cubic hon

Order-3-4 heptagonal honeycomb

In the geometry of hyperbolic 3-space, the order-3-4 heptagonal honeycomb or 7,3,4 honeycomb a regular space-filling tessellation (or honeycomb). Each infinite cell consists of a heptagonal tiling who

Order-4-3 pentagonal honeycomb

In the geometry of hyperbolic 3-space, the order-4-3 pentagonal honeycomb or 5,4,3 honeycomb is a regular space-filling tessellation (or honeycomb). Each infinite cell is an order-4 pentagonal tiling

Runcitruncated tesseractic honeycomb

In four-dimensional Euclidean geometry, the runcitruncated tesseractic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 4-space.

Octahedral-hexagonal tiling honeycomb

In the geometry of hyperbolic 3-space, the octahedron-hexagonal tiling honeycomb is a paracompact uniform honeycomb, constructed from octahedron, hexagonal tiling, and trihexagonal tiling cells, in a

Runcinated tesseractic honeycomb

In four-dimensional Euclidean geometry, the runcinated tesseractic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 4-space. It is constructed by a runcination of a tesser

Stericantitruncated tesseractic honeycomb

In four-dimensional Euclidean geometry, the stericantitruncated tesseractic honeycomb is a uniform space-filling honeycomb. It is composed of runcitruncated 16-cell, cantitruncated tesseract, rhombicu

Tetrahedral-cubic honeycomb

In the geometry of hyperbolic 3-space, the tetrahedron-cube honeycomb is a compact uniform honeycomb, constructed from cube, tetrahedron, and cuboctahedron cells, in a rhombicuboctahedron vertex figur

Trigonal trapezohedral honeycomb

In geometry, the trigonal trapezohedral honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 3-space. Cells are identical trigonal trapezohedra or rhombohedra. Conway, Burgiel

Order-4 icosahedral honeycomb

In the geometry of hyperbolic 3-space, the order-4 icosahedral honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,5,4}.

Order-3-7 hexagonal honeycomb

In the geometry of hyperbolic 3-space, the order-3-7 hexagonal honeycomb or (6,3,7 honeycomb) a regular space-filling tessellation (or honeycomb) with Schläfli symbol {6,3,7}.

Order-3-5 heptagonal honeycomb

In the geometry of hyperbolic 3-space, the order-3-5 heptagonal honeycomb a regular space-filling tessellation (or honeycomb). Each infinite cell consists of a heptagonal tiling whose vertices lie on

Truncated 16-cell honeycomb

In four-dimensional Euclidean geometry, the truncated 16-cell honeycomb (or cantic tesseractic honeycomb) is a uniform space-filling tessellation (or honeycomb) in Euclidean 4-space. It is constructed

Tetrahedral-icosahedral honeycomb

In the geometry of hyperbolic 3-space, the tetrahedral-icosahedral honeycomb is a compact uniform honeycomb, constructed from icosahedron, tetrahedron, and octahedron cells, in an icosidodecahedron ve

Hyperbolic tetrahedral-octahedral honeycomb

In the geometry of hyperbolic 3-space, the tetrahedron-octahedron honeycomb is a compact uniform honeycomb, constructed from octahedron and tetrahedron cells, in a rhombicuboctahedron vertex figure. A

Order-6 triangular hosohedral honeycomb

In geometry, the order-6 triangular hosohedral honeycomb a regular space-filling tessellation (or honeycomb) with Schläfli symbol {2,3,6}. It has 6 triangular hosohedra {2,3} around each edge. It is a

Tetrahedral-triangular tiling honeycomb

In the geometry of hyperbolic 3-space, the tetrahedral-triangular tiling honeycomb is a paracompact uniform honeycomb, constructed from triangular tiling, tetrahedron, and octahedron cells, in an icos

Omnitruncated 8-simplex honeycomb

In eight-dimensional Euclidean geometry, the omnitruncated 8-simplex honeycomb is a space-filling tessellation (or honeycomb). It is composed entirely of omnitruncated 8-simplex facets. The facets of

8-demicubic honeycomb

The 8-demicubic honeycomb, or demiocteractic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 8-space. It is constructed as an alternation of the regular 8-cubic honeycomb

Stericantellated tesseractic honeycomb

In four-dimensional Euclidean geometry, the stericantellated tesseractic honeycomb is a uniform space-filling honeycomb.

Architectonic and catoptric tessellation

In geometry, John Horton Conway defines architectonic and catoptric tessellations as the uniform tessellations (or honeycombs) of Euclidean 3-space with prime space groups and their duals, as three-di

Steriruncitruncated tesseractic honeycomb

In four-dimensional Euclidean geometry, the steriruncitruncated tesseractic honeycomb is a uniform space-filling honeycomb.

Order-6 cubic honeycomb

The order-6 cubic honeycomb is a paracompact regular space-filling tessellation (or honeycomb) in hyperbolic 3-space. It is paracompact because it has vertex figures composed of an infinite number of

Cantitruncated tesseractic honeycomb

In four-dimensional Euclidean geometry, the cantitruncated tesseractic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 4-space.

Order-4 square tiling honeycomb

In the geometry of hyperbolic 3-space, the order-4 square tiling honeycomb is one of 11 paracompact regular honeycombs. It is paracompact because it has infinite cells and vertex figures, with all ver

Order-6 dodecahedral honeycomb

The order-6 dodecahedral honeycomb is one of 11 paracompact regular honeycombs in hyperbolic 3-space. It is paracompact because it has vertex figures composed of an infinite number of faces, with all

Icosahedral honeycomb

In geometry, the icosahedral honeycomb is one of four compact, regular, space-filling tessellations (or honeycombs) in hyperbolic 3-space. With Schläfli symbol {3,5,3}, there are three icosahedra arou

Tetrahedral-dodecahedral honeycomb

In the geometry of hyperbolic 3-space, the tetrahedral-dodecahedral honeycomb is a compact uniform honeycomb, constructed from dodecahedron, tetrahedron, and icosidodecahedron cells, in a rhombitetrat

Hexagonal tiling honeycomb

In the field of hyperbolic geometry, the hexagonal tiling honeycomb is one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells composed of an

8-simplex honeycomb

In eighth-dimensional Euclidean geometry, the 8-simplex honeycomb is a space-filling tessellation (or honeycomb). The tessellation fills space by 8-simplex, rectified 8-simplex, birectified 8-simplex,

8-cubic honeycomb

The 8-cubic honeycomb or octeractic honeycomb is the only regular space-filling tessellation (or honeycomb) in Euclidean 8-space. It is analogous to the square tiling of the plane and to the cubic hon

Omnitruncated tesseractic honeycomb

In four-dimensional Euclidean geometry, the omnitruncated tesseractic honeycomb is a uniform space-filling honeycomb. It has omnitruncated tesseract, truncated cuboctahedral prism, and 8-8 duoprism fa

Quarter 7-cubic honeycomb

In seven-dimensional Euclidean geometry, the quarter 7-cubic honeycomb is a uniform space-filling tessellation (or honeycomb). It has half the vertices of the 7-demicubic honeycomb, and a quarter of t

Quarter 8-cubic honeycomb

In seven-dimensional Euclidean geometry, the quarter 8-cubic honeycomb is a uniform space-filling tessellation (or honeycomb). It has half the vertices of the 8-demicubic honeycomb, and a quarter of t

120-cell honeycomb

In the geometry of hyperbolic 4-space, the 120-cell honeycomb is one of five compact regular space-filling tessellations (or honeycombs). With Schläfli symbol {5,3,3,3}, it has three 120-cells around

Cyclotruncated 5-simplex honeycomb

In five-dimensional Euclidean geometry, the cyclotruncated 5-simplex honeycomb or cyclotruncated hexateric honeycomb is a space-filling tessellation (or honeycomb). It is composed of 5-simplex, trunca

Runcicantellated 24-cell honeycomb

In four-dimensional Euclidean geometry, the runcicantellated 24-cell honeycomb is a uniform space-filling honeycomb.

Pentagrammic-order 600-cell honeycomb

In the geometry of hyperbolic 4-space, the pentagrammic-order 600-cell honeycomb is one of four regular star-honeycombs. With Schläfli symbol {3,3,5,5/2}, it has five 600-cells around each face in a p

Order-7-3 triangular honeycomb

In the geometry of hyperbolic 3-space, the order-7-3 triangular honeycomb (or 3,7,3 honeycomb) is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,7,3}.

Stericantic tesseractic honeycomb

In four-dimensional Euclidean geometry, the stericantic tesseractic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 4-space.

Bitruncated 16-cell honeycomb

In four-dimensional Euclidean geometry, the bitruncated 16-cell honeycomb (or runcicantic tesseractic honeycomb) is a uniform space-filling tessellation (or honeycomb) in Euclidean 4-space.

Order-6 hexagonal tiling honeycomb

In the field of hyperbolic geometry, the order-6 hexagonal tiling honeycomb is one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells with a

Cubic honeycomb

The cubic honeycomb or cubic cellulation is the only proper regular space-filling tessellation (or honeycomb) in Euclidean 3-space made up of cubic cells. It has 4 cubes around every edge, and 8 cubes

Alternated hypercubic honeycomb

In geometry, the alternated hypercube honeycomb (or demicubic honeycomb) is a dimensional infinite series of honeycombs, based on the hypercube honeycomb with an alternation operation. It is given a S

Triangular tiling honeycomb

The triangular tiling honeycomb is one of 11 paracompact regular space-filling tessellations (or honeycombs) in hyperbolic 3-space. It is called paracompact because it has infinite cells and vertex fi

© 2023 Useful Links.