In the geometry of hyperbolic 5-space, the 5-orthoplex honeycomb is one of five paracompact regular space-filling tessellations (or honeycombs). It is called paracompact because it has infinite vertex figures, with all vertices as ideal points at infinity. With Schläfli symbol {3,3,3,4,3}, it has three 5-orthoplexes around each cell. It is dual to the 24-cell honeycomb honeycomb. (Wikipedia).

(5,3,2) triangle tiling: http://shpws.me/NW2E (7,3,2) triangle tiling (small): http://shpws.me/NW3A (6,3,2) triangle tiling: http://shpws.me/NW3H (4,3,2) triangle tiling: http://shpws.me/NW3K (3,3,2) triangle tiling: http://shpws.me/NW3J (4,4,2) triangle tiling: http://shpws.me/NW3M

From playlist 3D printing

These sculptures are joint work with Roice Nelson. They are available from shapeways.com at http://shpws.me/oNgi, http://shpws.me/oqOx and http://shpws.me/orB8.

From playlist 3D printing

Orthocenters exist! | Universal Hyperbolic Geometry 10 | NJ Wildberger

In classical hyperbolic geometry, orthocenters of triangles do not in general exist. Here in universal hyperbolic geometry, they do. This is a crucial building block for triangle geometry in this subject. The dual of an orthocenter is called an ortholine---also not seen in classical hyperb

From playlist Universal Hyperbolic Geometry

Orthogonality and Orthonormality

We know that the word orthogonal is kind of like the word perpendicular. It implies that two vectors have an angle of ninety degrees or half pi radians between them. But this term means much more than this, as we can have orthogonal matrices, or entire subspaces that are orthogonal to one

From playlist Mathematics (All Of It)

What are four types of polygons

👉 Learn about polygons and how to classify them. A polygon is a plane shape bounded by a finite chain of straight lines. A polygon can be concave or convex and it can also be regular or irregular. A concave polygon is a polygon in which at least one of its interior angles is greater than 1

From playlist Classify Polygons

This shows a 3d print of a mathematical sculpture I produced using shapeways.com. This model is available at http://shpws.me/q0PF.

From playlist 3D printing

Reaching for Infinity Through Honeycombs – Roice Nelson

Pick any three integers larger than 2. We describe how to understand and draw a picture of a corresponding kaleidoscopic {p,q,r} honeycomb, up to and including {∞,∞,∞}.

From playlist G4G12 Videos

3. Structure of Cellular Solids

MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015 View the complete course: http://ocw.mit.edu/3-054S15 Instructor: Lorna Gibson The structure of cellular materials, honeycombs and modeling honeycombs are explored in this session. License: Creative Commons BY

From playlist MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015

The Mystery of the Fibonacci Cycle

A video about the mysterious pattern found in the final digits of Fibonacci numbers. It turns out, if you write out the full sequence of Fibonacci numbers, the pattern of final digits repeats every 60 numbers. What’s up with that? Watch this video and you’ll find out! (My apologies to any

From playlist Summer of Math Exposition Youtube Videos

Large deviations for random hives and the spectrum of the sum of two random.. by Hariharan Narayanan

PROGRAM COMBINATORIAL ALGEBRAIC GEOMETRY: TROPICAL AND REAL (HYBRID) ORGANIZERS: Arvind Ayyer (IISc, India), Madhusudan Manjunath (IITB, India) and Pranav Pandit (ICTS-TIFR, India) DATE & TIME: 27 June 2022 to 08 July 2022 VENUE: Madhava Lecture Hall and Online Algebraic geometry is t

From playlist Combinatorial Algebraic Geometry: Tropical and Real (HYBRID)

5. Honeycombs: Out-of-plane Behavior

MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015 View the complete course: http://ocw.mit.edu/3-054S15 Instructor: Lorna Gibson Modeling mechanical behavior of honeycombs and out-of-plane properties are discussed. License: Creative Commons BY-NC-SA More info

From playlist MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015

Amazon Honeycode | Build An Application Without Coding | AWS Training | Edureka | AWS Rewind - 4

🔥Edureka AWS Certification Training: https://www.edureka.co/aws-certification-training This "Amazon Honeycode Tutorial" video by Edureka will help you understand what exactly is Amazon Honeycode and how you can create an application using honeycode without any programming. 🔹Checkout Edur

From playlist AWS Tutorial Videos

Fun with polyominoes | Elementary Mathematics (K-6) Explained 6 | NJ Wildberger

Polyominoes are shapes formed formed unit squares (cells) in the grid plane, connected in such a way that we can go from any one square to another via common edges. Polyominoes with three squares are called trominoes, with four squares they are tetrominoes (popularized by the game Tetris)

From playlist Elementary Mathematics (K-6) Explained

MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015 View the complete course: http://ocw.mit.edu/3-054S15 Instructor: Lorna Gibson Professor Gibson takes questions from students in order to review concepts that will be covered on the midterm exam. License: Crea

From playlist MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015

Geometry - Ch. 5: Triangle (1 of TBD) What is a Triangle?

Visit http://ilectureonline.com for more math and science lectures! To donate: http://www.ilectureonline.com/donate https://www.patreon.com/user?u=3236071 We will learn the definition of a triangle is a geometric shape that has 3 sides and 3 angles. Next video in this series on YouTube:

From playlist GEOMETRY CH 5 TRIANGLES

4. Honeycombs: In-plane Behavior

MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015 View the complete course: http://ocw.mit.edu/3-054S15 Instructor: Lorna Gibson This session includes a review of honeycombs, and explores the mechanical properties of honeycombs. License: Creative Commons BY-N

From playlist MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015

Why do Bees build Hexagons? Honeycomb Conjecture explained by Thomas Hales

Mathematician Thomas Hales explains the Honeycomb Conjecture in the context of bees. Hales proved that the hexagon tiling (hexagonal honeycomb) is the most efficient way to maximise area whilst minimising perimeter. Interview with Oxford Mathematician Dr Tom Crawford. Produced by Tom Roc

From playlist Mathstars

Stanford Seminar - Creating a Buzz Around B2B Software

Christine Yen Honeycomb May 29, 2019 Honeycomb co-founder and CEO Christine Yen spent a decade as a software engineer before creating her own company. She describes how her deep domain knowledge and relationships with like-minded software developers propelled her startup’s launch, and sha

From playlist MS&E472 - Entrepreneurial Thought Leaders - Stanford Seminars