6-polytopes | Honeycombs (geometry)

The 5-demicube honeycomb (or demipenteractic honeycomb) is a uniform space-filling tessellation (or honeycomb) in Euclidean 5-space. It is constructed as an alternation of the regular 5-cube honeycomb. It is the first tessellation in the demihypercube honeycomb family which, with all the next ones, is not regular, being composed of two different types of uniform facets. The 5-cubes become alternated into 5-demicubes h{4,3,3,3} and the alternated vertices create 5-orthoplex {3,3,3,4} facets. (Wikipedia).

These sculptures are joint work with Roice Nelson. They are available from shapeways.com at http://shpws.me/oNgi, http://shpws.me/oqOx and http://shpws.me/orB8.

From playlist 3D printing

Canonical structures inside the Platonic solids III | Universal Hyperbolic Geometry 51

The dodecahedron is surely one of the truly great mathematical objects---revered by the ancient Greeks, Kepler, and many mathematicians since. Its symmetries are particularly rich, and in this video we look at how to see the five-fold and six-fold symmetries of this object via internal str

From playlist Universal Hyperbolic Geometry

How to Construct a Dodecahedron

How the greeks constructed the Dodecahedron. Euclids Elements Book 13, Proposition 17. In geometry, a dodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid. A regular dode

From playlist Platonic Solids

Canonical structures inside Platonic solids II | Universal Hyperbolic Geometry 50 | NJ Wildberger

The cube and the octahedron are dual solids. Each has contained within it both 2-fold, 3-fold and 4-fold symmetry. In this video we look at how these symmetries are generated in the cube via canonical structures. Along the way we discuss bipartite graphs. This gives us more insight into t

From playlist Universal Hyperbolic Geometry

The remarkable Platonic solids I | Universal Hyperbolic Geometry 47 | NJ Wildberger

The Platonic solids have fascinated mankind for thousands of years. These regular solids embody some kind of fundamental symmetry and their analogues in the hyperbolic setting will open up a whole new domain of discourse. Here we give an introduction to these fascinating objects: the tetra

From playlist Universal Hyperbolic Geometry

A space-filling polyhedron, based on the Weaire-Phelan foam

The Weaire-Phelan foam is a relaxation of a packing of irregular dodecahedra and tetrakaidecahedra. Dissect the dodecahedra into pentagon-based pyramids by adding a vertex at the center, then glue their bases to the surrounding tetrakaidecahedra. Amazingly the faces line up and the result

From playlist Geometry

3. Structure of Cellular Solids

MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015 View the complete course: http://ocw.mit.edu/3-054S15 Instructor: Lorna Gibson The structure of cellular materials, honeycombs and modeling honeycombs are explored in this session. License: Creative Commons BY

From playlist MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015

The Mystery of the Fibonacci Cycle

A video about the mysterious pattern found in the final digits of Fibonacci numbers. It turns out, if you write out the full sequence of Fibonacci numbers, the pattern of final digits repeats every 60 numbers. What’s up with that? Watch this video and you’ll find out! (My apologies to any

From playlist Summer of Math Exposition Youtube Videos

Large deviations for random hives and the spectrum of the sum of two random.. by Hariharan Narayanan

PROGRAM COMBINATORIAL ALGEBRAIC GEOMETRY: TROPICAL AND REAL (HYBRID) ORGANIZERS: Arvind Ayyer (IISc, India), Madhusudan Manjunath (IITB, India) and Pranav Pandit (ICTS-TIFR, India) DATE & TIME: 27 June 2022 to 08 July 2022 VENUE: Madhava Lecture Hall and Online Algebraic geometry is t

From playlist Combinatorial Algebraic Geometry: Tropical and Real (HYBRID)

(5,3,2) triangle tiling: http://shpws.me/NW2E (7,3,2) triangle tiling (small): http://shpws.me/NW3A (6,3,2) triangle tiling: http://shpws.me/NW3H (4,3,2) triangle tiling: http://shpws.me/NW3K (3,3,2) triangle tiling: http://shpws.me/NW3J (4,4,2) triangle tiling: http://shpws.me/NW3M

From playlist 3D printing

5. Honeycombs: Out-of-plane Behavior

MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015 View the complete course: http://ocw.mit.edu/3-054S15 Instructor: Lorna Gibson Modeling mechanical behavior of honeycombs and out-of-plane properties are discussed. License: Creative Commons BY-NC-SA More info

From playlist MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015

Amazon Honeycode | Build An Application Without Coding | AWS Training | Edureka | AWS Rewind - 4

🔥Edureka AWS Certification Training: https://www.edureka.co/aws-certification-training This "Amazon Honeycode Tutorial" video by Edureka will help you understand what exactly is Amazon Honeycode and how you can create an application using honeycode without any programming. 🔹Checkout Edur

From playlist AWS Tutorial Videos

In this short, we show how to think about the four dimensional and five dimensional hypercube. Even though we don't have these dimensions to visualize, we can give an idea of these objects in three dimensional space by the analogy learned from building lines, squares and cubes from smaller

From playlist MathShorts

MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015 View the complete course: http://ocw.mit.edu/3-054S15 Instructor: Lorna Gibson Professor Gibson takes questions from students in order to review concepts that will be covered on the midterm exam. License: Crea

From playlist MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015

Reaching for Infinity Through Honeycombs – Roice Nelson

Pick any three integers larger than 2. We describe how to understand and draw a picture of a corresponding kaleidoscopic {p,q,r} honeycomb, up to and including {∞,∞,∞}.

From playlist G4G12 Videos

4. Honeycombs: In-plane Behavior

MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015 View the complete course: http://ocw.mit.edu/3-054S15 Instructor: Lorna Gibson This session includes a review of honeycombs, and explores the mechanical properties of honeycombs. License: Creative Commons BY-N

From playlist MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015

David Hall - Recipe for a 'bola Honeycombs - G4G13 Apr 2018

Develop a honeycomb grid of integers which becomes the basis for a 3D parabolic polyheda.

From playlist G4G13 Videos

Stanford Seminar - Creating a Buzz Around B2B Software

Christine Yen Honeycomb May 29, 2019 Honeycomb co-founder and CEO Christine Yen spent a decade as a software engineer before creating her own company. She describes how her deep domain knowledge and relationships with like-minded software developers propelled her startup’s launch, and sha

From playlist MS&E472 - Entrepreneurial Thought Leaders - Stanford Seminars