Galois theory

Galois theory

In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems in field theory to group theory, which makes them simpler and easier to understand. Galois introduced the subject for studying roots of polynomials. This allowed him to characterize the polynomial equations that are solvable by radicals in terms of properties of the permutation group of their roots—an equation is solvable by radicals if its roots may be expressed by a formula involving only integers, nth roots, and the four basic arithmetic operations. This widely generalizes the Abel–Ruffini theorem, which asserts that a general polynomial of degree at least five cannot be solved by radicals. Galois theory has been used to solve classic problems including showing that two problems of antiquity cannot be solved as they were stated (doubling the cube and trisecting the angle), and characterizing the regular polygons that are constructible (this characterization was previously given by Gauss, but all known proofs that this characterization is complete require Galois theory). Galois' work was published by Joseph Liouville fourteen years after his death. The theory took longer to become popular among mathematicians and to be well understood. Galois theory has been generalized to Galois connections and Grothendieck's Galois theory. (Wikipedia).

Galois theory
Video thumbnail

Galois theory: Introduction

This lecture is part of an online course on Galois theory. This is an introductory lecture, giving an informal overview of Galois theory. We discuss some historical examples of problems that it was used to solve, such as the Abel-Ruffini theorem that degree 5 polynomials cannot in genera

From playlist Galois theory

Video thumbnail

Galois theory II | Math History | NJ Wildberger

We continue our historical introduction to the ideas of Galois and others on the fundamental problem of how to solve polynomial equations. In this video we focus on Galois' insights into how extending our field of coefficients, typically by introducing some radicals, the symmetries of the

From playlist MathHistory: A course in the History of Mathematics

Video thumbnail

Galois theory I | Math History | NJ Wildberger

Galois theory gives a beautiful insight into the classical problem of when a given polynomial equation in one variable, such as x^5-3x^2+4=0 has solutions which can be expressed using radicals. Historically the problem of solving algebraic equations is one of the great drivers of algebra,

From playlist MathHistory: A course in the History of Mathematics

Video thumbnail

FIT4.1. Galois Group of a Polynomial

EDIT: There was an in-video annotation that was erased in 2018. My source (Herstein) assumes characteristic 0 for the initial Galois theory section, so separability is an automatic property. Let's assume that unless noted. In general, Galois = separable plus normal. Field Theory: We

From playlist Abstract Algebra

Video thumbnail

15 - Algorithmic aspects of the Galois theory in recent times

Orateur(s) : M. Singer Public : Tous Date : vendredi 28 octobre Lieu : Institut Henri Poincaré

From playlist Colloque Evariste Galois

Video thumbnail

Galois theory: Field extensions

This lecture is part of an online course on Galois theory. We review some basic results about field extensions and algebraic numbers. We define the degree of a field extension and show that a number is algebraic over a field if and only if it is contained in a finite extension. We use thi

From playlist Galois theory

Video thumbnail

Galois theory: Algebraic closure

This lecture is part of an online graduate course on Galois theory. We define the algebraic closure of a field as a sort of splitting field of all polynomials, and check that it is algebraically closed. We hen give a topological proof that the field C of complex numbers is algebraically

From playlist Galois theory

Video thumbnail

Galois theory: Fundamental theorem of algebra

This lecture is part of an online graduate course on Galois theory. We use Galois theory to give a (mostly) algebraic proof that the complex numbers form an algebraically closed field.

From playlist Galois theory

Video thumbnail

Galois theory: Infinite Galois extensions

This lecture is part of an online graduate course on Galois theory. We show how to extend Galois theory to infinite Galois extensions. The main difference is that the Galois group has a topology, and intermediate field extensions now correspond to closed subgroups of the Galois group. We

From playlist Galois theory

Video thumbnail

Jochen Koenigsmann : Galois codes for arithmetic and geometry via the power of valuation theory

Find this video and other talks given by worldwide mathematicians on CIRM's Audiovisual Mathematics Library: http://library.cirm-math.fr. And discover all its functionalities: - Chapter markers and keywords to watch the parts of your choice in the video - Videos enriched with abstracts, b

From playlist Algebra

Video thumbnail

Self Study Galois Theory

Do you want to study Galois theory, but you can't take a regular class? Here is self study guide based on the resources I found most helpful when I independently studied Galois theory. If you haven't already, check out my video called "Self Study Strategies for Math" so you know how to tur

From playlist Self Study Guides for Math

Video thumbnail

CTNT 2020 - Infinite Galois Theory (by Keith Conrad) - Lecture 3

The Connecticut Summer School in Number Theory (CTNT) is a summer school in number theory for advanced undergraduate and beginning graduate students, to be followed by a research conference. For more information and resources please visit: https://ctnt-summer.math.uconn.edu/

From playlist CTNT 2020 - Infinite Galois Theory (by Keith Conrad)

Video thumbnail

CTNT 2020 - Infinite Galois Theory (by Keith Conrad) - Lecture 4

The Connecticut Summer School in Number Theory (CTNT) is a summer school in number theory for advanced undergraduate and beginning graduate students, to be followed by a research conference. For more information and resources please visit: https://ctnt-summer.math.uconn.edu/

From playlist CTNT 2020 - Infinite Galois Theory (by Keith Conrad)

Video thumbnail

Kevin Buzzard (lecture 2/20) Automorphic Forms And The Langlands Program [2017]

Full course playlist: https://www.youtube.com/playlist?list=PLhsb6tmzSpiysoRR0bZozub-MM0k3mdFR http://wwwf.imperial.ac.uk/~buzzard/MSRI/ Summer Graduate School Automorphic Forms and the Langlands Program July 24, 2017 - August 04, 2017 Kevin Buzzard (Imperial College, London) https://w

From playlist MSRI Summer School: Automorphic Forms And The Langlands Program, by Kevin Buzzard [2017]

Video thumbnail

Richard Taylor "Reciprocity Laws" [2012]

Slides for this talk: https://drive.google.com/file/d/1cIDu5G8CTaEctU5qAKTYlEOIHztL1uzB/view?usp=sharing Richard Taylor "Reciprocity Laws" Abstract: Reciprocity laws provide a rule to count the number of solutions to a fixed polynomial equation, or system of polynomial equations, modu

From playlist Number Theory

Video thumbnail

Kevin Buzzard (lecture 10/20) Automorphic Forms And The Langlands Program [2017]

Full course playlist: https://www.youtube.com/playlist?list=PLhsb6tmzSpiysoRR0bZozub-MM0k3mdFR http://wwwf.imperial.ac.uk/~buzzard/MSRI/ Summer Graduate School Automorphic Forms and the Langlands Program July 24, 2017 - August 04, 2017 Kevin Buzzard (Imperial College, London) https://w

From playlist MSRI Summer School: Automorphic Forms And The Langlands Program, by Kevin Buzzard [2017]

Video thumbnail

CTNT 2020 - Infinite Galois Theory (by Keith Conrad) - Lecture 2

Note: apologies for the (unknown) technical glitch in the image. The Connecticut Summer School in Number Theory (CTNT) is a summer school in number theory for advanced undergraduate and beginning graduate students, to be followed by a research conference. For more information and resource

From playlist CTNT 2020 - Infinite Galois Theory (by Keith Conrad)

Video thumbnail

Visual Group Theory, Lecture 6.4: Galois groups

Visual Group Theory, Lecture 6.4: Galois groups The Galois group Gal(f(x)) of a polynomial f(x) is the automorphism group of its splitting field. The degree of a chain of field extensions satisfies a "tower law", analogous to the tower law for the index of a chain of subgroups. This hints

From playlist Visual Group Theory

Related pages

Monster group | Joseph Alfred Serret | Linear subspace | Klein four-group | Rational function | Vector space | Algebraic closure | Finite field | Local field | Artin–Schreier theory | Automorphism | Joseph Liouville | Arthur Cayley | Permutation | Root of unity | Permutation group | Emil Artin | Polynomial | Symmetric polynomial | Symmetric group | Group isomorphism | Alternating group | Rational number | Derived algebraic geometry | Mathieu group | Angle trisection | Doubling the cube | Transposition (mathematics) | Discriminant | Derivation (differential algebra) | Composition series | Serge Lang | Abel–Ruffini theorem | Elementary symmetric polynomial | Field extension | Simple group | Linear map | Binomial theorem | Differential Galois theory | Monic polynomial | Characteristic (algebra) | Mathematics | Field (mathematics) | Integer | Constructible polygon | Fundamental theorem of Galois theory | Heinrich Martin Weber | Igor Shafarevich | Algebraic geometry | Cayley's theorem | Algebraic number theory | Cyclic group | Group theory | Normal subgroup | Root of a function | Algebraic equation | Absolute Galois group | Nth root | Galois group | Galois connection | Ground field | Grothendieck's Galois theory | Cubic equation | Irrational number | Camille Jordan | Solvable group | Geometry | Regular polygon | Rational root theorem | Algorithm | Topological Galois theory | Quadratic equation