2 41 polytope

In 8-dimensional geometry, the 241 is a uniform 8-polytope, constructed within the symmetry of the E8 group. Its Coxeter symbol is 241, describing its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 2-node sequences. The rectified 241 is constructed by points at the mid-edges of the 241. The birectified 241 is constructed by points at the triangle face centers of the 241, and is the same as the rectified 142. These polytopes are part of a family of 255 (28 − 1) convex uniform polytopes in 8-dimensions, made of uniform polytope facets, defined by all permutations of rings in this Coxeter-Dynkin diagram: . (Wikipedia).

Why aren't 51, 57, and 91 prime? They're semi-prime! Featuring @shane_duffy

I've talked before about my favorite "non-prime but seem like they should be prime numbers" and @shane_duffy asks here why some of them seem so…off-putting. The secret is that although they aren't prime, they are semi-prime. Semi-prime numbers are those numbers that have exactly two prime

From playlist polymathematic #shorts

What are four types of polygons

👉 Learn about polygons and how to classify them. A polygon is a plane shape bounded by a finite chain of straight lines. A polygon can be concave or convex and it can also be regular or irregular. A concave polygon is a polygon in which at least one of its interior angles is greater than 1

From playlist Classify Polygons

1,010,010,101,000,011 - #MegaFavNumbers

This is my submission to the #megafavnumbers project. My number is 1010010101000011, which is prime in bases 2, 3, 4, 5, 6 and 10. I've open-sourced my code: https://bitbucket.org/Bip901/multibase-primes Clarification: by "ignoring 1" I mean ignoring base 1, since this number cannot be fo

From playlist MegaFavNumbers

Half of a 48-cell dual

This shows a 3d print of a mathematical sculpture I produced using shapeways.com. This model is available at http://shpws.me/o9F1. This is joint work with Saul Schleimer.

From playlist 3D printing

Conversion Arcs and 2,916,485,648,612,232,232,816 (MegaFavNumbers)

I'm sorry. The MegaFavNumbers playlist: https://www.youtube.com/playlist?list=PLar4u0v66vIodqt3KSZPsYyuULD5meoAo

From playlist MegaFavNumbers

Recorded with https://screencast-o-matic.com

From playlist Lockdown 2021

Classifying Polygons

http://mathispower4u.wordpress.com/

From playlist Geometry Basics

Scattering Amplitudes and Positive Geometries at Infinity (Lecture 2) by Nima Arkani-Hamed

RECENT DEVELOPMENTS IN S-MATRIX THEORY (ONLINE) ORGANIZERS: Alok Laddha, Song He and Yu-tin Huang DATE: 20 July 2020 to 31 July 2020 VENUE:Online Due to the ongoing COVID-19 pandemic, the original program has been canceled. However, the meeting will be conducted through online lectures

From playlist Recent Developments in S-matrix Theory (Online)

Generalizing GKZ secondary fan using Berkovich geometry by Tony Yue Yu

PROGRAM COMBINATORIAL ALGEBRAIC GEOMETRY: TROPICAL AND REAL (HYBRID) ORGANIZERS: Arvind Ayyer (IISc, India), Madhusudan Manjunath (IITB, India) and Pranav Pandit (ICTS-TIFR, India) DATE & TIME: 27 June 2022 to 08 July 2022 VENUE: Madhava Lecture Hall and Online Algebraic geometry is t

Tropical Geometry - Lecture 11 - Toric Varieties | Bernd Sturmfels

Twelve lectures on Tropical Geometry by Bernd Sturmfels (Max Planck Institute for Mathematics in the Sciences | Leipzig, Germany) We recommend supplementing these lectures by reading the book "Introduction to Tropical Geometry" (Maclagan, Sturmfels - 2015 - American Mathematical Society)

Lagrangian Floer theory (Lecture – 02) by Sushmita Venugopalan

J-Holomorphic Curves and Gromov-Witten Invariants DATE:25 December 2017 to 04 January 2018 VENUE:Madhava Lecture Hall, ICTS, Bangalore Holomorphic curves are a central object of study in complex algebraic geometry. Such curves are meaningful even when the target has an almost complex stru

From playlist J-Holomorphic Curves and Gromov-Witten Invariants

Reducing Isotropy to KLS: An Almost Cubic Volume Algorithm by Santosh Vempala

Program Advances in Applied Probability II (ONLINE) ORGANIZERS: Vivek S Borkar (IIT Bombay, India), Sandeep Juneja (TIFR Mumbai, India), Kavita Ramanan (Brown University, Rhode Island), Devavrat Shah (MIT, US) and Piyush Srivastava (TIFR Mumbai, India) DATE: 04 January 2021 to 08 Januar

From playlist Advances in Applied Probability II (Online)

Newton Polytopes and parameter estimation in reaction networks by Nidhi Kaihnsa

PROGRAM COMBINATORIAL ALGEBRAIC GEOMETRY: TROPICAL AND REAL (HYBRID) ORGANIZERS: Arvind Ayyer (IISc, India), Madhusudan Manjunath (IITB, India) and Pranav Pandit (ICTS-TIFR, India) DATE & TIME: 27 June 2022 to 08 July 2022 VENUE: Madhava Lecture Hall and Online Algebraic geometry is t

Classifying a polygon in two different ways ex 4

👉 Learn about polygons and how to classify them. A polygon is a plane shape bounded by a finite chain of straight lines. A polygon can be concave or convex and it can also be regular or irregular. A concave polygon is a polygon in which at least one of its interior angles is greater than 1

From playlist Classify Polygons

optimization and Tropical Combinatorics (Lecture 3) by Michael Joswig

PROGRAM COMBINATORIAL ALGEBRAIC GEOMETRY: TROPICAL AND REAL (HYBRID) ORGANIZERS Arvind Ayyer (IISc, India), Madhusudan Manjunath (IITB, India) and Pranav Pandit (ICTS-TIFR, India) DATE: 27 June 2022 to 08 July 2022 VENUE: Madhava Lecture Hall and Online Algebraic geometry is the study of

Cosmology (Lecture - 04) by Nima Arkani Hamed

Kavli Asian Winter School (KAWS) on Strings, Particles and Cosmology 2018 DATE:08 January 2018 to 18 January 2018 VENUE:Ramanujan Lecture Hall, ICTS Bangalore The Kavli Asian Winter School (KAWS) on Strings, Particles and Cosmology is a pan-Asian collaborative effort of high energy theori

From Gentle algebras to S-matrix in Quantum Field Theory by Alok Laddha

PROGRAM COMBINATORIAL ALGEBRAIC GEOMETRY: TROPICAL AND REAL (HYBRID) ORGANIZERS Arvind Ayyer (IISc, India), Madhusudan Manjunath (IITB, India) and Pranav Pandit (ICTS-TIFR, India) DATE: 27 June 2022 to 08 July 2022 VENUE: Madhava Lecture Hall and Online Algebraic geometry is the study of

Machine- Learning the Landscape(Lecture 2) by Yang-Hui He

PROGRAM KAVLI ASIAN WINTER SCHOOL (KAWS) ON STRINGS, PARTICLES AND COSMOLOGY (ONLINE) ORGANIZERS Francesco Benini (SISSA, Italy), Bartek Czech (Tsinghua University, China), Dongmin Gang (Seoul National University, South Korea), Sungjay Lee (Korea Institute for Advanced Study, South Korea

What is a net

👉 Learn about polygons and how to classify them. A polygon is a plane shape bounded by a finite chain of straight lines. A polygon can be concave or convex and it can also be regular or irregular. A concave polygon is a polygon in which at least one of its interior angles is greater than 1

From playlist Classify Polygons