In 6-dimensional geometry, the 221 polytope is a uniform 6-polytope, constructed within the symmetry of the E6 group. It was discovered by Thorold Gosset, published in his 1900 paper. He called it an 6-ic semi-regular figure. It is also called the Schläfli polytope. Its Coxeter symbol is 221, describing its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of one of the 2-node sequences. He also studied its connection with the 27 lines on the cubic surface, which are naturally in correspondence with the vertices of 221. The rectified 221 is constructed by points at the mid-edges of the 221. The birectified 221 is constructed by points at the triangle face centers of the 221, and is the same as the rectified 122. These polytopes are a part of family of 39 convex uniform polytopes in 6-dimensions, made of uniform 5-polytope facets and vertex figures, defined by all permutations of rings in this Coxeter-Dynkin diagram: . (Wikipedia).

What are four types of polygons

👉 Learn about polygons and how to classify them. A polygon is a plane shape bounded by a finite chain of straight lines. A polygon can be concave or convex and it can also be regular or irregular. A concave polygon is a polygon in which at least one of its interior angles is greater than 1

From playlist Classify Polygons

What is Polypropylene and what is it used for?

From wiki: Polypropylene, also known as polypropene, is a thermoplastic polymer used in a wide variety of applications. It is produced via chain-growth polymerization from the monomer propylene. Polypropylene belongs to the group of polyolefins and is partially crystalline and non-polar. W

From playlist Materials Sciences 101 - Introduction to Materials Science & Engineering 2020

Sudoku Colorings of a 16-cell Pre-Fractal – Hideki Tsuiki

This is a joint work with Yasuyuki Tsukamoto. 16-cell is a 4-dimensional polytope with a lot of beautiful properties, in particular with respect to cubic projections of a fractal based on it. We define SUDOKU-like colorings of a 3D cubic lattice which is defined based on properties of a

From playlist G4G12 Videos

Tropical Geometry - Lecture 12 - Geometric Tropicalization | Bernd Sturmfels

Twelve lectures on Tropical Geometry by Bernd Sturmfels (Max Planck Institute for Mathematics in the Sciences | Leipzig, Germany) We recommend supplementing these lectures by reading the book "Introduction to Tropical Geometry" (Maclagan, Sturmfels - 2015 - American Mathematical Society)

From playlist Twelve Lectures on Tropical Geometry by Bernd Sturmfels

Illustrative Mathematics Grade 6 - Unit 1- Lesson 13

Illustrative Mathematics Grade 6 - Unit 1- Lesson 13 Open Up Resources (OUR) If you have any questions, please contact me at dhabecker@gmail.com

From playlist Illustrative Mathematics Grade 6 Unit 1

👉 Learn about polygons and how to classify them. A polygon is a plane shape bounded by a finite chain of straight lines. A polygon can be concave or convex and it can also be regular or irregular. A concave polygon is a polygon in which at least one of its interior angles is greater than 1

From playlist Classify Polygons

Karim Alexander Adiprasito: New Construction for projectively unique polytopes

K. Adiprasitos lecture was held within the framework of the Hausdorff Trimester Program Universality and Homogeneity during the special seminar "Universality of moduli spaces and geometry" (06.11.2013)

From playlist HIM Lectures: Trimester Program "Universality and Homogeneity"

Panorama of Mathematics: Michel Goemans

Panorama of Mathematics To celebrate the tenth year of successful progression of our cluster of excellence we organized the conference "Panorama of Mathematics" from October 21-23, 2015. It outlined new trends, results, and challenges in mathematical sciences. Michel Goemans: "A Panorami

From playlist Panorama of Mathematics

Tropical Geometry - Lecture 3 - Fields and Varieties | Bernd Sturmfels

Twelve lectures on Tropical Geometry by Bernd Sturmfels (Max Planck Institute for Mathematics in the Sciences | Leipzig, Germany) We recommend supplementing these lectures by reading the book "Introduction to Tropical Geometry" (Maclagan, Sturmfels - 2015 - American Mathematical Society)

From playlist Twelve Lectures on Tropical Geometry by Bernd Sturmfels

Tropical Geometry - Lecture 9 - Tropical Convexity | Bernd Sturmfels

Twelve lectures on Tropical Geometry by Bernd Sturmfels (Max Planck Institute for Mathematics in the Sciences | Leipzig, Germany) We recommend supplementing these lectures by reading the book "Introduction to Tropical Geometry" (Maclagan, Sturmfels - 2015 - American Mathematical Society)

From playlist Twelve Lectures on Tropical Geometry by Bernd Sturmfels

Rade Zivaljevic (6/27/17) Bedlewo: Topological methods in discrete geometry; new developments

Some new applications of the configurations space/test map scheme can be found in Chapter 21 of the latest (third) edition of the Handbook of Discrete and Computational Geometry [2]. In this lecture we focus on some of the new developments which, due to the limitations of space, may have b

From playlist Applied Topology in Będlewo 2017

Hodge theory for combinatorial geometries - June Huh

Short Talks by Postdoctoral Members June Huh - September 22, 2015 http://www.math.ias.edu/calendar/event/88194/1442952900/1442953800 More videos on http://video.ias.edu

From playlist Short Talks by Postdoctoral Members

Three-digits square trick #shorts

Check out the main channel @polymathematic ! If you're strong at two-digit multiplication, you can leverage that into this trick for squaring three-digit numbers ending in 5. Subscribe: https://bit.ly/polymathematic | Enable ALL push notifications 🔔 There are only two steps to this tri

From playlist polymathematic #shorts

#shorts This video reviews the divisibility rule for 3.

From playlist Math Shorts

Computing disk potentials via multi-directional sft - Chris Woodward

Joint IAS/Princeton University Symplectic Geometry Seminar Topic: Computing disk potentials via multi-directional sft Speaker: Chris Woodward Affiliation: Rutgers University Date: February 14, 2022 I will talk about ongoing work with S. Venugopalan on computing disk potentials (which are

From playlist Mathematics

Lagrangian Floer theory (Lecture – 02) by Sushmita Venugopalan

J-Holomorphic Curves and Gromov-Witten Invariants DATE:25 December 2017 to 04 January 2018 VENUE:Madhava Lecture Hall, ICTS, Bangalore Holomorphic curves are a central object of study in complex algebraic geometry. Such curves are meaningful even when the target has an almost complex stru

From playlist J-Holomorphic Curves and Gromov-Witten Invariants

What is the difference between convex and concave

👉 Learn about polygons and how to classify them. A polygon is a plane shape bounded by a finite chain of straight lines. A polygon can be concave or convex and it can also be regular or irregular. A concave polygon is a polygon in which at least one of its interior angles is greater than 1

From playlist Classify Polygons

Henry Adams (8/30/21): Vietoris-Rips complexes of hypercube graphs

Questions about Vietoris-Rips complexes of hypercube graphs arise naturally from problems in genetic recombination, and also from Kunneth formulas for persistent homology with the sum metric. We describe the homotopy types of Vietoris-Rips complexes of hypercube graphs at small scale param

From playlist Beyond TDA - Persistent functions and its applications in data sciences, 2021