Theorems in discrete geometry | Theorems in graph theory | Planar graphs | Polyhedral combinatorics | Geometric graph theory

Steinitz's theorem

In polyhedral combinatorics, a branch of mathematics, Steinitz's theorem is a characterization of the undirected graphs formed by the edges and vertices of three-dimensional convex polyhedra: they are exactly the 3-vertex-connected planar graphs. That is, every convex polyhedron forms a 3-connected planar graph, and every 3-connected planar graph can be represented as the graph of a convex polyhedron. For this reason, the 3-connected planar graphs are also known as polyhedral graphs. This result provides a classification theorem for the three-dimensional convex polyhedra, something that is not known in higher dimensions. It provides a complete and purely combinatorial description of the graphs of these polyhedra, allowing other results on them, such as Eberhard's theorem on the realization of polyhedra with given types of faces, to be proven more easily, without reference to the geometry of these shapes. Additionally, it has been applied in graph drawing, as a way to construct three-dimensional visualizations of abstract graphs. Branko Grünbaum has called this theorem "the most important and deepest known result on 3-polytopes." The theorem appears in a 1922 publication of Ernst Steinitz, after whom it is named. It can be proven by mathematical induction (as Steinitz did), by finding the minimum-energy state of a two-dimensional spring system and lifting the result into three dimensions, or by using the circle packing theorem.Several extensions of the theorem are known, in which the polyhedron that realizes a given graph has additional constraints; for instance, every polyhedral graph is the graph of a convex polyhedron with integer coordinates, or the graph of a convex polyhedron all of whose edges are tangent to a common midsphere. (Wikipedia).

Steinitz's theorem
Video thumbnail

What is the Riemann Hypothesis?

This video provides a basic introduction to the Riemann Hypothesis based on the the superb book 'Prime Obsession' by John Derbyshire. Along the way I look at convergent and divergent series, Euler's famous solution to the Basel problem, and the Riemann-Zeta function. Analytic continuation

From playlist Mathematics

Video thumbnail

Weil conjectures 1 Introduction

This talk is the first of a series of talks on the Weil conejctures. We recall properties of the Riemann zeta function, and describe how Artin used these to motivate the definition of the zeta function of a curve over a finite field. We then describe Weil's generalization of this to varie

From playlist Algebraic geometry: extra topics

Video thumbnail

35 - Properties of bases (continued)

Algebra 1M - international Course no. 104016 Dr. Aviv Censor Technion - International school of engineering

From playlist Algebra 1M

Video thumbnail

Jeff Erickson - Lecture 5 - Two-dimensional computational topology - 22/06/18

School on Low-Dimensional Geometry and Topology: Discrete and Algorithmic Aspects (http://geomschool2018.univ-mlv.fr/) Jeff Erickson (University of Illinois at Urbana-Champaign, USA) Two-dimensional computational topology - Lecture 4 Abstract: This series of lectures will describe recent

From playlist Jeff Erickson - School on Low-Dimensional Geometry and Topology: Discrete and Algorithmic Aspects

Video thumbnail

Joe Neeman: Gaussian isoperimetry and related topics II

The Gaussian isoperimetric inequality gives a sharp lower bound on the Gaussian surface area of any set in terms of its Gaussian measure. Its dimension-independent nature makes it a powerful tool for proving concentration inequalities in high dimensions. We will explore several consequence

From playlist Winter School on the Interplay between High-Dimensional Geometry and Probability

Video thumbnail

Emmy Noether in Erlangen and Göttingen by Ravi Rao

DATES: Monday 29 Aug, 2016 - Tuesday 30 Aug, 2016 VENUE: Madhava Lecture Hall, ICTS Bangalore Emmy Noether (1882­-1935) is well known for her famous contributions to abstract algebra and theoretical physics. Noether’s mathematical work has been divided into three ”epochs”. In the first (

From playlist The Legacy of Emmy Noether

Video thumbnail

Lecture 16: Vertex & Orthogonal Unfolding

MIT 6.849 Geometric Folding Algorithms: Linkages, Origami, Polyhedra, Fall 2012 View the complete course: http://ocw.mit.edu/6-849F12 Instructor: Erik Demaine This lecture continues with open problems involving general unfoldings of polyhedra and proof of vertex unfolding using constructi

From playlist MIT 6.849 Geometric Folding Algorithms, Fall 2012

Video thumbnail

Multivariable Calculus | The Squeeze Theorem

We calculate a limit using a multivariable version of the squeeze theorem. http://www.michael-penn.net http://www.randolphcollege.edu/mathematics/

From playlist Multivariable Calculus

Video thumbnail

51 - Properties of Ker(T) and Im(T)

Algebra 1M - international Course no. 104016 Dr. Aviv Censor Technion - International school of engineering

From playlist Algebra 1M

Video thumbnail

Gary Gordon and Liz McMahon: Generalizations of Crapo's Beta Invariant

Abstract: Crapo's beta invariant was defined by Henry Crapo in the 1960s. For a matroid M, the invariant β(M) is the non-negative integer that is the coefficient of the x term of the Tutte polynomial. Crapo proved that β(M) is greater than 0 if and only if M is connected and M is not a loo

From playlist Combinatorics

Video thumbnail

Maxim Kazarian - 1/3 Mathematical Physics of Hurwitz numbers

Hurwitz numbers enumerate ramified coverings of a sphere. Equivalently, they can be expressed in terms of combinatorics of the symmetric group; they enumerate factorizations of permutations as products of transpositions. It turns out that these numbers obey a huge num

From playlist ­­­­Physique mathématique des nombres de Hurwitz pour débutants

Video thumbnail

The Field With One Element and The Riemann Hypothesis (Full Video)

A crash course of Deninger's program to prove the Riemann Hypothesis using a cohomological interpretation of the Riemann Zeta Function. You can Deninger talk about this in more detail here: http://swc.math.arizona.edu/dls/ Leave some comments!

From playlist Riemann Hypothesis

Video thumbnail

Calculus - The Fundamental Theorem, Part 1

The Fundamental Theorem of Calculus. First video in a short series on the topic. The theorem is stated and two simple examples are worked.

From playlist Calculus - The Fundamental Theorem of Calculus

Video thumbnail

Understanding and computing the Riemann zeta function

In this video I explain Riemann's zeta function and the Riemann hypothesis. I also implement and algorithm to compute the return values - here's the Python script:https://gist.github.com/Nikolaj-K/996dba1ff1045d767b10d4d07b1b032f

From playlist Programming

Video thumbnail

Hard Lefschetz Theorem and Hodge-Riemann Relations for Combinatorial Geometries - June Huh

June Huh Princeton University; Veblen Fellow, School of Mathematics November 9, 2015 https://www.math.ias.edu/seminars/abstract?event=47563 A conjecture of Read predicts that the coefficients of the chromatic polynomial of a graph form a log-concave sequence for any graph. A related conj

From playlist Members Seminar

Video thumbnail

Some identities involving the Riemann-Zeta function.

After introducing the Riemann-Zeta function we derive a generating function for its values at positive even integers. This generating function is used to prove two sum identities. http://www.michael-penn.net http://www.randolphcollege.edu/mathematics/

From playlist The Riemann Zeta Function

Video thumbnail

More identities involving the Riemann-Zeta function!

By applying some combinatorial tricks to an identity from https://youtu.be/2W2Ghi9idxM we are able to derive two identities involving the Riemann-Zeta function. http://www.michael-penn.net http://www.randolphcollege.edu/mathematics/

From playlist The Riemann Zeta Function

Related pages

Tutte embedding | Apollonian network | Complete (complexity) | Classification theorem | Schlegel diagram | Line segment | Double exponential function | Balinski's theorem | Polygon | Euclidean plane | Convex body | Vertex connectivity | Möbius transformation | Ideal polyhedron | Y-Δ transform | W. T. Tutte | Dihedral angle | Stacked polytope | Hooke's law | Lattice (order) | Colin de Verdière graph invariant | Necessity and sufficiency | Multiset | Adjacency matrix | Convex polytope | Complete graph | René Descartes | Right angle | Eberhard's theorem | Jakob Steiner | Fáry's theorem | Dual polyhedron | Projective transformation | Midsphere | Frustum | Császár polyhedron | Dual graph | Pierre Varignon | Straight skeleton | Convex hull | Kernel (linear algebra) | Halin graph | Unit sphere | Circle packing theorem | Existential theory of the reals | Perles configuration | Pyritohedron | Vertex (geometry) | Corank | Tree (graph theory) | Hyperbolic space | Integral polytope | Parallel projection | Graph automorphism | William Thurston | Mathematical induction | Convex Polytopes | Peripheral cycle | Finite set | Linear function | Planar graph | Polyhedral graph | Unit interval | Hyperbolic geometry | Series–parallel graph | Polyhedral combinatorics | Half-space (geometry) | Graph minor | Vertex (graph theory) | Tangent circles | Cut (graph theory) | Cycle (graph theory) | Convex position | Regular dodecahedron | Luigi Cremona | Symmetric matrix | Grade (slope) | Ellipsoid method | Prism graph | Branko Grünbaum | Wheel graph | Ernst Steinitz