UsefulLinks
Physics
Nuclear and Particle Physics
Nuclear Magnetic Resonance (NMR)
1. Fundamental Principles of Nuclear Magnetism
2. NMR Instrumentation and Hardware
3. Basic NMR Experiments and Data Acquisition
4. Chemical Shift and Spectral Interpretation
5. Spin-Spin Coupling and Multiplicity
6. Integration and Quantitative Analysis
7. Advanced One-Dimensional Techniques
8. Two-Dimensional NMR Spectroscopy
9. Multinuclear NMR
10. Specialized NMR Techniques
11. NMR Applications and Problem Solving
12. Magnetic Resonance Imaging (MRI)
10.
Specialized NMR Techniques
10.1.
Dynamic NMR
10.1.1.
Chemical Exchange
10.1.1.1.
Exchange Rate Determination
10.1.1.2.
Coalescence Phenomena
10.1.1.3.
Line Shape Analysis
10.1.2.
Conformational Dynamics
10.1.2.1.
Ring Flipping
10.1.2.2.
Bond Rotation
10.1.2.3.
Tautomerism
10.1.3.
Temperature Studies
10.1.3.1.
Variable Temperature NMR
10.1.3.2.
Activation Parameters
10.1.3.3.
Thermodynamic Analysis
10.2.
Solid-State NMR
10.2.1.
Challenges in Solids
10.2.1.1.
Anisotropic Interactions
10.2.1.2.
Line Broadening
10.2.1.3.
Sensitivity Issues
10.2.2.
Magic Angle Spinning (MAS)
10.2.2.1.
Averaging Anisotropies
10.2.2.2.
Spinning Sidebands
10.2.2.3.
High-Speed MAS
10.2.3.
Cross-Polarization
10.2.3.1.
Sensitivity Enhancement
10.2.3.2.
Heteronuclear Experiments
10.2.3.3.
Contact Time Optimization
10.2.4.
Applications
10.2.4.1.
Polymer Characterization
10.2.4.2.
Pharmaceutical Solids
10.2.4.3.
Inorganic Materials
10.3.
Hyperpolarization Techniques
10.3.1.
Dynamic Nuclear Polarization (DNP)
10.3.1.1.
Radical Enhancement
10.3.1.2.
Microwave Irradiation
10.3.1.3.
Low-Temperature Requirements
10.3.2.
Parahydrogen-Induced Polarization (PHIP)
10.3.2.1.
Hydrogenation Reactions
10.3.2.2.
Signal Enhancement
10.3.2.3.
Mechanistic Studies
10.3.3.
Optical Pumping
10.3.3.1.
Noble Gas Hyperpolarization
10.3.3.2.
Medical Imaging Applications
10.3.3.3.
Void Space Studies
Previous
9. Multinuclear NMR
Go to top
Next
11. NMR Applications and Problem Solving