Useful Links
Physics
Applied and Interdisciplinary Physics
Computational Physics
1. Introduction to Computational Physics
2. Mathematical Foundations
3. Programming Fundamentals
4. Computer Arithmetic and Error Analysis
5. Root Finding Methods
6. Numerical Differentiation
7. Numerical Integration
8. Linear Systems
9. Eigenvalue Problems
10. Ordinary Differential Equations
11. Partial Differential Equations
12. Monte Carlo Methods
13. Molecular Dynamics
14. Data Analysis and Visualization
15. Applications in Classical Mechanics
16. Applications in Electromagnetism
17. Applications in Quantum Mechanics
18. Applications in Statistical Mechanics
19. Applications in Fluid Dynamics
20. High-Performance Computing
Linear Systems
Direct Methods
Gaussian Elimination
LU Decomposition
Cholesky Decomposition
QR Decomposition
Pivoting Strategies
Partial Pivoting
Complete Pivoting
Scaled Partial Pivoting
Iterative Methods
Jacobi Method
Gauss-Seidel Method
Successive Over-Relaxation
Conjugate Gradient Method
Sparse Matrix Methods
Storage Formats
Sparse Direct Solvers
Sparse Iterative Solvers
Preconditioning
Diagonal Preconditioning
Incomplete LU Factorization
Multigrid Preconditioning
Previous
7. Numerical Integration
Go to top
Next
9. Eigenvalue Problems