UsefulLinks
Physics
Applied and Interdisciplinary Physics
Computational Physics
1. Introduction to Computational Physics
2. Mathematical Foundations
3. Programming Fundamentals
4. Computer Arithmetic and Error Analysis
5. Root Finding Methods
6. Numerical Differentiation
7. Numerical Integration
8. Linear Systems
9. Eigenvalue Problems
10. Ordinary Differential Equations
11. Partial Differential Equations
12. Monte Carlo Methods
13. Molecular Dynamics
14. Data Analysis and Visualization
15. Applications in Classical Mechanics
16. Applications in Electromagnetism
17. Applications in Quantum Mechanics
18. Applications in Statistical Mechanics
19. Applications in Fluid Dynamics
20. High-Performance Computing
10.
Ordinary Differential Equations
10.1.
Initial Value Problems
10.1.1.
First-Order ODEs
10.1.2.
Higher-Order ODEs
10.1.3.
Systems of ODEs
10.2.
Euler Methods
10.2.1.
Forward Euler
10.2.2.
Backward Euler
10.2.3.
Modified Euler
10.3.
Runge-Kutta Methods
10.3.1.
Second-Order RK
10.3.2.
Fourth-Order RK
10.3.3.
Adaptive RK Methods
10.3.4.
Embedded RK Methods
10.4.
Multistep Methods
10.4.1.
Adams-Bashforth Methods
10.4.2.
Adams-Moulton Methods
10.4.3.
Predictor-Corrector Methods
10.5.
Stability Analysis
10.5.1.
Absolute Stability
10.5.2.
Relative Stability
10.5.3.
Stiff Equations
10.6.
Boundary Value Problems
10.6.1.
Shooting Method
10.6.2.
Finite Difference Method
10.6.3.
Collocation Methods
Previous
9. Eigenvalue Problems
Go to top
Next
11. Partial Differential Equations