Useful Links
Physics
Applied and Interdisciplinary Physics
Computational Physics
1. Introduction to Computational Physics
2. Mathematical Foundations
3. Programming Fundamentals
4. Computer Arithmetic and Error Analysis
5. Root Finding Methods
6. Numerical Differentiation
7. Numerical Integration
8. Linear Systems
9. Eigenvalue Problems
10. Ordinary Differential Equations
11. Partial Differential Equations
12. Monte Carlo Methods
13. Molecular Dynamics
14. Data Analysis and Visualization
15. Applications in Classical Mechanics
16. Applications in Electromagnetism
17. Applications in Quantum Mechanics
18. Applications in Statistical Mechanics
19. Applications in Fluid Dynamics
20. High-Performance Computing
Monte Carlo Methods
Random Number Generation
Pseudorandom Generators
Linear Congruential Generators
Mersenne Twister
Testing Random Numbers
Sampling Methods
Inverse Transform Method
Rejection Method
Box-Muller Transform
Markov Chain Monte Carlo
Markov Chains
Detailed Balance
Ergodicity
Metropolis Algorithm
Metropolis-Hastings Algorithm
Advanced Sampling Techniques
Importance Sampling
Stratified Sampling
Antithetic Variates
Applications
Integration
Optimization
Statistical Physics
Quantum Monte Carlo
Previous
11. Partial Differential Equations
Go to top
Next
13. Molecular Dynamics