UsefulLinks
Physics
Applied and Interdisciplinary Physics
Computational Physics
1. Introduction to Computational Physics
2. Mathematical Foundations
3. Programming Fundamentals
4. Computer Arithmetic and Error Analysis
5. Root Finding Methods
6. Numerical Differentiation
7. Numerical Integration
8. Linear Systems
9. Eigenvalue Problems
10. Ordinary Differential Equations
11. Partial Differential Equations
12. Monte Carlo Methods
13. Molecular Dynamics
14. Data Analysis and Visualization
15. Applications in Classical Mechanics
16. Applications in Electromagnetism
17. Applications in Quantum Mechanics
18. Applications in Statistical Mechanics
19. Applications in Fluid Dynamics
20. High-Performance Computing
19.
Applications in Fluid Dynamics
19.1.
Incompressible Flow
19.1.1.
Navier-Stokes Equations
19.1.2.
Pressure Projection Methods
19.1.3.
Vorticity-Stream Function Formulation
19.2.
Compressible Flow
19.2.1.
Euler Equations
19.2.2.
Shock Waves
19.2.3.
Riemann Problems
19.3.
Lattice Boltzmann Methods
19.3.1.
Kinetic Theory
19.3.2.
Collision Models
19.3.3.
Boundary Conditions
19.4.
Turbulence
19.4.1.
Direct Numerical Simulation
19.4.2.
Large Eddy Simulation
19.4.3.
Reynolds-Averaged Navier-Stokes
Previous
18. Applications in Statistical Mechanics
Go to top
Next
20. High-Performance Computing