UsefulLinks
Physics
Applied and Interdisciplinary Physics
Computational Physics
1. Introduction to Computational Physics
2. Mathematical Foundations
3. Programming Fundamentals
4. Computer Arithmetic and Error Analysis
5. Root Finding Methods
6. Numerical Differentiation
7. Numerical Integration
8. Linear Systems
9. Eigenvalue Problems
10. Ordinary Differential Equations
11. Partial Differential Equations
12. Monte Carlo Methods
13. Molecular Dynamics
14. Data Analysis and Visualization
15. Applications in Classical Mechanics
16. Applications in Electromagnetism
17. Applications in Quantum Mechanics
18. Applications in Statistical Mechanics
19. Applications in Fluid Dynamics
20. High-Performance Computing
18.
Applications in Statistical Mechanics
18.1.
Classical Statistical Mechanics
18.1.1.
Canonical Ensemble
18.1.2.
Grand Canonical Ensemble
18.1.3.
Partition Functions
18.2.
Phase Transitions
18.2.1.
Ising Model
18.2.2.
Potts Model
18.2.3.
Critical Phenomena
18.2.4.
Finite-Size Scaling
18.3.
Transport Properties
18.3.1.
Diffusion
18.3.2.
Viscosity
18.3.3.
Thermal Conductivity
18.4.
Percolation Theory
18.4.1.
Site Percolation
18.4.2.
Bond Percolation
18.4.3.
Critical Exponents
Previous
17. Applications in Quantum Mechanics
Go to top
Next
19. Applications in Fluid Dynamics