UsefulLinks
Physics
Applied and Interdisciplinary Physics
Computational Physics
1. Introduction to Computational Physics
2. Mathematical Foundations
3. Programming Fundamentals
4. Computer Arithmetic and Error Analysis
5. Root Finding Methods
6. Numerical Differentiation
7. Numerical Integration
8. Linear Systems
9. Eigenvalue Problems
10. Ordinary Differential Equations
11. Partial Differential Equations
12. Monte Carlo Methods
13. Molecular Dynamics
14. Data Analysis and Visualization
15. Applications in Classical Mechanics
16. Applications in Electromagnetism
17. Applications in Quantum Mechanics
18. Applications in Statistical Mechanics
19. Applications in Fluid Dynamics
20. High-Performance Computing
13.
Molecular Dynamics
13.1.
Basic Principles
13.1.1.
Newton's Equations of Motion
13.1.2.
Force Fields
13.1.3.
Potential Energy Functions
13.2.
Integration Algorithms
13.2.1.
Verlet Algorithm
13.2.2.
Velocity Verlet
13.2.3.
Leapfrog Algorithm
13.2.4.
Predictor-Corrector Methods
13.3.
Interatomic Potentials
13.3.1.
Lennard-Jones Potential
13.3.2.
Coulomb Interactions
13.3.3.
Bonded Interactions
13.3.4.
Many-Body Potentials
13.4.
Boundary Conditions
13.4.1.
Periodic Boundary Conditions
13.4.2.
Fixed Boundaries
13.4.3.
Reflecting Boundaries
13.5.
Thermodynamic Ensembles
13.5.1.
Microcanonical Ensemble
13.5.2.
Canonical Ensemble
13.5.3.
Isothermal-Isobaric Ensemble
13.6.
Temperature and Pressure Control
13.6.1.
Thermostats
13.6.2.
Barostats
13.6.3.
Coupling Methods
13.7.
Analysis Methods
13.7.1.
Radial Distribution Functions
13.7.2.
Mean Square Displacement
13.7.3.
Correlation Functions
13.7.4.
Thermodynamic Properties
Previous
12. Monte Carlo Methods
Go to top
Next
14. Data Analysis and Visualization