Orthogonal coordinate systems

Orthogonal coordinates

In mathematics, orthogonal coordinates are defined as a set of d coordinates q = (q1, q2, ..., qd) in which the coordinate hypersurfaces all meet at right angles (note: superscripts are indices, not exponents). A coordinate surface for a particular coordinate qk is the curve, surface, or hypersurface on which qk is a constant. For example, the three-dimensional Cartesian coordinates (x, y, z) is an orthogonal coordinate system, since its coordinate surfaces x = constant, y = constant, and z = constant are planes that meet at right angles to one another, i.e., are perpendicular. Orthogonal coordinates are a special but extremely common case of curvilinear coordinates. (Wikipedia).

Orthogonal coordinates
Video thumbnail

What are adjacent angles

👉 Learn how to define angle relationships. Knowledge of the relationships between angles can help in determining the value of a given angle. The various angle relationships include: vertical angles, adjacent angles, complementary angles, supplementary angles, linear pairs, etc. Vertical a

From playlist Angle Relationships

Video thumbnail

What is an example of lines that are a linear pair

👉 Learn how to define angle relationships. Knowledge of the relationships between angles can help in determining the value of a given angle. The various angle relationships include: vertical angles, adjacent angles, complementary angles, supplementary angles, linear pairs, etc. Vertical a

From playlist Angle Relationships

Video thumbnail

What are adjacent angles and linear pairs

👉 Learn how to define angle relationships. Knowledge of the relationships between angles can help in determining the value of a given angle. The various angle relationships include: vertical angles, adjacent angles, complementary angles, supplementary angles, linear pairs, etc. Vertical a

From playlist Angle Relationships

Video thumbnail

What are complementary angles

👉 Learn how to define angle relationships. Knowledge of the relationships between angles can help in determining the value of a given angle. The various angle relationships include: vertical angles, adjacent angles, complementary angles, supplementary angles, linear pairs, etc. Vertical a

From playlist Angle Relationships

Video thumbnail

What are examples of adjacent angles

👉 Learn how to define angle relationships. Knowledge of the relationships between angles can help in determining the value of a given angle. The various angle relationships include: vertical angles, adjacent angles, complementary angles, supplementary angles, linear pairs, etc. Vertical a

From playlist Angle Relationships

Video thumbnail

What are acute, obtuse, right, and straight angles

👉 Learn how to define angle relationships. Knowledge of the relationships between angles can help in determining the value of a given angle. The various angle relationships include: vertical angles, adjacent angles, complementary angles, supplementary angles, linear pairs, etc. Vertical a

From playlist Angle Relationships

Video thumbnail

What are examples of Vertical angles

👉 Learn how to define angle relationships. Knowledge of the relationships between angles can help in determining the value of a given angle. The various angle relationships include: vertical angles, adjacent angles, complementary angles, supplementary angles, linear pairs, etc. Vertical a

From playlist Angle Relationships

Video thumbnail

What are reference angles

👉 Learn how to define angle relationships. Knowledge of the relationships between angles can help in determining the value of a given angle. The various angle relationships include: vertical angles, adjacent angles, complementary angles, supplementary angles, linear pairs, etc. Vertical a

From playlist Angle Relationships

Video thumbnail

21: Rigid body rotation

Jacob Linder: 15.02.12, Classical Mechanics (TFY4345), v2012 NTNU A full textbook covering the material in the lectures in detail can be downloaded for free here: http://bookboon.com/en/introduction-to-lagrangian-hamiltonian-mechanics-ebook

From playlist NTNU: TFY 4345 - Classical Mechanics | CosmoLearning Physics

Video thumbnail

Linear Algebra 7.1 Orthogonal Matrices

My notes are available at http://asherbroberts.com/ (so you can write along with me). Elementary Linear Algebra: Applications Version 12th Edition by Howard Anton, Chris Rorres, and Anton Kaul A. Roberts is supported in part by the grants NSF CAREER 1653602 and NSF DMS 2153803.

From playlist Linear Algebra

Video thumbnail

22: Rigid body rotation - Part 2

Jacob Linder: 15.02.12, Classical Mechanics (TFY4345), v2012 NTNU A full textbook covering the material in the lectures in detail can be downloaded for free here: http://bookboon.com/en/introduction-to-lagrangian-hamiltonian-mechanics-ebook

From playlist NTNU: TFY 4345 - Classical Mechanics | CosmoLearning Physics

Video thumbnail

What are supplementary angles

👉 Learn how to define angle relationships. Knowledge of the relationships between angles can help in determining the value of a given angle. The various angle relationships include: vertical angles, adjacent angles, complementary angles, supplementary angles, linear pairs, etc. Vertical a

From playlist Angle Relationships

Video thumbnail

Wolfgang Schief: A canonical discrete analogue of classical circular cross sections of ellipsoids

Abstract: Two classical but perhaps little known facts of "elementary" geometry are that an ellipsoid may be sliced into two one-parameter families of circles and that ellipsoids may be deformed into each other in such a manner that these circles are preserved. In fact, as an illustration

From playlist Integrable Systems 9th Workshop

Video thumbnail

ME565 Lecture 14: Fourier Transforms

ME565 Lecture 14 Engineering Mathematics at the University of Washington Fourier Transforms Notes: http://faculty.washington.edu/sbrunton/me565/pdf/L14.pdf Course Website: http://faculty.washington.edu/sbrunton/me565/ http://faculty.washington.edu/sbrunton/

From playlist Engineering Mathematics (UW ME564 and ME565)

Video thumbnail

Tensor Calculus Lecture 15: Geodesic Curvature Preview

This course will eventually continue on Patreon at http://bit.ly/PavelPatreon Textbook: http://bit.ly/ITCYTNew Errata: http://bit.ly/ITAErrata McConnell's classic: http://bit.ly/MCTensors Table of Contents of http://bit.ly/ITCYTNew Rules of the Game Coordinate Systems and the Role of Te

From playlist Introduction to Tensor Calculus

Video thumbnail

Arno Kuijlaars: Tilings of a hexagon and non-hermitian orthogonality on a contour

I will discuss polynomials $P_{N}$ of degree $N$ that satisfy non-Hermitian orthogonality conditions with respect to the weight $\frac{\left ( z+1 \right )^{N}\left ( z+a \right )^{N}}{z^{2N}}$ on a contour in the complex plane going around 0. These polynomials reduce to Jacobi polynomials

From playlist Probability and Statistics

Video thumbnail

What is General Relativity? Lesson 7: The Glome (OPTIONAL)

What is General Relativity? Lesson 7: The Glome (OPTIONAL) : This lesson is an aside regarding the generalization of spherical coordinates to higher dimensions.

From playlist What is General Relativity?

Video thumbnail

Rotation matrices | Lecture 8 | Matrix Algebra for Engineers

Example of the rotation matrix as an orthogonal matrix. Join me on Coursera: https://www.coursera.org/learn/matrix-algebra-engineers Lecture notes at http://www.math.ust.hk/~machas/matrix-algebra-for-engineers.pdf Subscribe to my channel: http://www.youtube.com/user/jchasnov?sub_confir

From playlist Matrix Algebra for Engineers

Video thumbnail

Math 060 Fall 2017 111317C Orthonormal Bases

Motivation: how to obtain the coordinate vector with respect to a given basis? Definition: orthogonal set. Example. Orthogonal implies linearly independent. Orthonormal sets. Example of an orthonormal set. Definition: orthonormal basis. Properties of orthonormal bases. Example: Fou

From playlist Course 4: Linear Algebra (Fall 2017)

Video thumbnail

What is an angle and it's parts

👉 Learn how to define angle relationships. Knowledge of the relationships between angles can help in determining the value of a given angle. The various angle relationships include: vertical angles, adjacent angles, complementary angles, supplementary angles, linear pairs, etc. Vertical a

From playlist Angle Relationships

Related pages

Curl (mathematics) | Line integral | Scalar field | Exponentiation | Parabolic coordinates | Bispherical coordinates | Unit vector | Vector Laplacian | Coordinate system | Summation | Bipolar cylindrical coordinates | Reciprocal length | Gradient | Curvilinear coordinates | Volume | Surface integral | Kronecker delta | Dot product | Product (mathematics) | Conical coordinates | Surface (mathematics) | Geodetic coordinates | Divergence | Laplace's equation | Separation of variables | Imaginary unit | Normal (geometry) | Boundary value problem | Paraboloidal coordinates | Length | Helmholtz equation | Toroidal coordinates | Volume element | Mathematics | Cartesian coordinate system | Change of basis | Ordinary differential equation | Vector area | Parabolic cylindrical coordinates | Euclidean space | Tensor | Cross product | Holomorphic function | Levi-Civita symbol | Infinitesimal | Metric tensor | Complex number | Ellipsoidal coordinates | Prolate spheroidal coordinates | Einstein notation | Covariance and contravariance of vectors | Orthogonal coordinates | Line element | Oblate spheroidal coordinates | Partial differential equation | Elliptic cylindrical coordinates | Vector field