Polyhedra

Semiregular polyhedron

In geometry, the term semiregular polyhedron (or semiregular polytope) is used variously by different authors. In its original definition, it is a polyhedron with regular polygonal faces, and a symmetry group which is transitive on its vertices; today, this is more commonly referred to as a uniform polyhedron (this follows from Thorold Gosset's 1900 definition of the more general semiregular polytope). These polyhedra include: * The thirteen Archimedean solids. * An infinite series of convex prisms. * An infinite series of convex antiprisms (their semiregular nature was first observed by Kepler). These semiregular solids can be fully specified by a vertex configuration: a listing of the faces by number of sides, in order as they occur around a vertex. For example: 3.5.3.5 represents the icosidodecahedron, which alternates two triangles and two pentagons around each vertex. In contrast: 3.3.3.5 is a pentagonal antiprism. These polyhedra are sometimes described as vertex-transitive. Since Gosset, other authors have used the term semiregular in different ways in relation to higher dimensional polytopes. E. L. Elte provided a definition which Coxeter found too artificial. Coxeter himself dubbed Gosset's figures uniform, with only a quite restricted subset classified as semiregular. Yet others have taken the opposite path, categorising more polyhedra as semiregular. These include: * Three sets of star polyhedra which meet Gosset's definition, analogous to the three convex sets listed above. * The duals of the above semiregular solids, arguing that since the dual polyhedra share the same symmetries as the originals, they too should be regarded as semiregular. These duals include the Catalan solids, the convex dipyramids, and the convex antidipyramids or trapezohedra, and their nonconvex analogues. A further source of confusion lies in the way that the Archimedean solids are defined, again with different interpretations appearing. Gosset's definition of semiregular includes figures of higher symmetry: the regular and quasiregular polyhedra. Some later authors prefer to say that these are not semiregular, because they are more regular than that - the uniform polyhedra are then said to include the regular, quasiregular, and semiregular ones. This naming system works well, and reconciles many (but by no means all) of the confusions. In practice even the most eminent authorities can get themselves confused, defining a given set of polyhedra as semiregular and/or Archimedean, and then assuming (or even stating) a different set in subsequent discussions. Assuming that one's stated definition applies only to convex polyhedra is probably the most common failing. Coxeter, Cromwell, and Cundy & Rollett are all guilty of such slips. (Wikipedia).

Semiregular polyhedron
Video thumbnail

Kaapi with Kuriosity: Tilings (ONLINE) by Mahuya Datta

Kaapi with Kuriosity Tilings (ONLINE) Speaker: Mahuya Datta (Indian Statistical Institute, Kolkata) When: 4:00 pm to 5:30 pm Sunday, 27 March 2022 Where: Zoom meeting and Livestream on ICTS YouTube channel Abstract: Tiling is a way of arranging plane shapes so that they completely co

From playlist Kaapi With Kuriosity (A Monthly Public Lecture Series)

Video thumbnail

Robert Fathauer - Tessellations: Mathematics, Art, and Recreation - CoM Apr 2021

A tessellation, also known as a tiling, is a collection of shapes (tiles) that fit together without gaps or overlaps. Tessellations are a topic of mathematics research as well as having many practical applications, the most obvious being the tiling of floors and other surfaces. There are n

From playlist Celebration of Mind 2021

Video thumbnail

What is a concave polygon

👉 Learn about polygons and how to classify them. A polygon is a plane shape bounded by a finite chain of straight lines. A polygon can be concave or convex and it can also be regular or irregular. A concave polygon is a polygon in which at least one of its interior angles is greater than 1

From playlist Classify Polygons

Video thumbnail

What are four types of polygons

👉 Learn about polygons and how to classify them. A polygon is a plane shape bounded by a finite chain of straight lines. A polygon can be concave or convex and it can also be regular or irregular. A concave polygon is a polygon in which at least one of its interior angles is greater than 1

From playlist Classify Polygons

Video thumbnail

What is the difference between a regular and irregular polygon

👉 Learn about polygons and how to classify them. A polygon is a plane shape bounded by a finite chain of straight lines. A polygon can be concave or convex and it can also be regular or irregular. A concave polygon is a polygon in which at least one of its interior angles is greater than 1

From playlist Classify Polygons

Video thumbnail

What is the difference between convex and concave

👉 Learn about polygons and how to classify them. A polygon is a plane shape bounded by a finite chain of straight lines. A polygon can be concave or convex and it can also be regular or irregular. A concave polygon is a polygon in which at least one of its interior angles is greater than 1

From playlist Classify Polygons

Video thumbnail

What is the difference between a regular and irregular polygons

👉 Learn about polygons and how to classify them. A polygon is a plane shape bounded by a finite chain of straight lines. A polygon can be concave or convex and it can also be regular or irregular. A concave polygon is a polygon in which at least one of its interior angles is greater than 1

From playlist Classify Polygons

Video thumbnail

What are the names of different types of polygons based on the number of sides

👉 Learn about polygons and how to classify them. A polygon is a plane shape bounded by a finite chain of straight lines. A polygon can be concave or convex and it can also be regular or irregular. A concave polygon is a polygon in which at least one of its interior angles is greater than 1

From playlist Classify Polygons

Video thumbnail

Sketch a net from a 3D figure

👉 Learn about polygons and how to classify them. A polygon is a plane shape bounded by a finite chain of straight lines. A polygon can be concave or convex and it can also be regular or irregular. A concave polygon is a polygon in which at least one of its interior angles is greater than 1

From playlist Classify Polygons

Video thumbnail

The 50 Cent Riddle That Stumped Australian Students

A 50 cent coin has 12 equal sides. If you place two coins next to each other on a table (see video for diagram), what is the angle formed between the two coins? This was asked to 12th grade (age 17 and 18) students in Australia. Many were confused and the math problem went viral after the

From playlist Geometry

Video thumbnail

What is the difference between convex and concave polygons

👉 Learn about polygons and how to classify them. A polygon is a plane shape bounded by a finite chain of straight lines. A polygon can be concave or convex and it can also be regular or irregular. A concave polygon is a polygon in which at least one of its interior angles is greater than 1

From playlist Classify Polygons

Video thumbnail

Live CEOing Ep 186: Polyhedra in Wolfram Language

Watch Stephen Wolfram and teams of developers in a live, working, language design meeting. This episode is about Polyhedra in the Wolfram Language.

From playlist Behind the Scenes in Real-Life Software Design

Video thumbnail

Sketch a figure from a net

👉 Learn about polygons and how to classify them. A polygon is a plane shape bounded by a finite chain of straight lines. A polygon can be concave or convex and it can also be regular or irregular. A concave polygon is a polygon in which at least one of its interior angles is greater than 1

From playlist Classify Polygons

Video thumbnail

Hermitian and Non-Hermitian Laplacians and Wave Equaions by Andrey shafarevich

Non-Hermitian Physics - PHHQP XVIII DATE: 04 June 2018 to 13 June 2018 VENUE:Ramanujan Lecture Hall, ICTS Bangalore Non-Hermitian Physics-"Pseudo-Hermitian Hamiltonians in Quantum Physics (PHHQP) XVIII" is the 18th meeting in the series that is being held over the years in Quantum Phys

From playlist Non-Hermitian Physics - PHHQP XVIII

Video thumbnail

Ben Smith: Face structures of tropical polyhedra

Many combinatorial algorithms arise from the interplay between faces of ordinary polyhedra, therefore tropicalizing these algorithms should rely on the face structure of tropical polyhedra. While they have many nice combinatorial properties, the classical definition of a face is flawed whe

From playlist Workshop: Tropical geometry and the geometry of linear programming

Video thumbnail

Introduction Polyhedra Using Euler's Formula

This video introduces polyhedra and how every convex polyhedron can be represented as a planar graph. mathispower4u.com

From playlist Graph Theory (Discrete Math)

Video thumbnail

Interactivity: Building and App in 60 Seconds

With the Wolfram Language and Mathematica, you really can build a useful, interactive app for exploring ideas in just 60 seconds. Starting with the 60-second app, this talk covers the ins and outs of the Wolfram Language function Manipulate, the key to instantly interactive interfaces. You

From playlist Geek Out with Wolfram Virtual Workshop 2014

Video thumbnail

Live CEOing Ep 173: Geometry in Wolfram Language

Watch Stephen Wolfram and teams of developers in a live, working, language design meeting. This episode is about Geometry in the Wolfram Language.

From playlist Behind the Scenes in Real-Life Software Design

Video thumbnail

What is a polygon and what is a non example of a one

👉 Learn about polygons and how to classify them. A polygon is a plane shape bounded by a finite chain of straight lines. A polygon can be concave or convex and it can also be regular or irregular. A concave polygon is a polygon in which at least one of its interior angles is greater than 1

From playlist Classify Polygons

Video thumbnail

Lecture 15: General & Edge Unfolding

MIT 6.849 Geometric Folding Algorithms: Linkages, Origami, Polyhedra, Fall 2012 View the complete course: http://ocw.mit.edu/6-849F12 Instructor: Erik Demaine This lecture begins with describing polyhedron unfolding for convex and nonconvex polygons. Algorithms for shortest path solutions

From playlist MIT 6.849 Geometric Folding Algorithms, Fall 2012

Related pages

Polytope | Vertex configuration | Platonic solid | Star polyhedron | Wythoff construction | Pentagonal antiprism | Pentagon | Archimedean solid | Icosidodecahedron | Regular polyhedron | Vertex (geometry) | Convex polytope | Symmetry group | Prism (geometry) | Polyhedron | Uniform polyhedron | Quasiregular polyhedron | Geometry | Regular polygon | Trapezohedron | Dual polyhedron | Triangle | Catalan solid | Semiregular polytope | Antiprism