Class field theory | Field extensions | Algebraic number theory

Abelian extension

In abstract algebra, an abelian extension is a Galois extension whose Galois group is abelian. When the Galois group is also cyclic, the extension is also called a cyclic extension. Going in the other direction, a Galois extension is called solvable if its Galois group is solvable, i.e., if the group can be decomposed into a series of normal extensions of an abelian group. Every finite extension of a finite field is a cyclic extension. Class field theory provides detailed information about the abelian extensions of number fields, function fields of algebraic curves over finite fields, and local fields. There are two slightly different definitions of the term cyclotomic extension. It can mean either an extension formed by adjoining roots of unity to a field, or a subextension of such an extension. The cyclotomic fields are examples. A cyclotomic extension, under either definition, is always abelian. If a field K contains a primitive n-th root of unity and the n-th root of an element of K is adjoined, the resulting Kummer extension is an abelian extension (if K has characteristic p we should say that p doesn't divide n, since otherwise this can fail even to be a separable extension). In general, however, the Galois groups of n-th roots of elements operate both on the n-th roots and on the roots of unity, giving a non-abelian Galois group as semi-direct product. The Kummer theory gives a complete description of the abelian extension case, and the Kronecker–Weber theorem tells us that if K is the field of rational numbers, an extension is abelian if and only if it is a subfield of a field obtained by adjoining a root of unity. There is an important analogy with the fundamental group in topology, which classifies all covering spaces of a space: abelian covers are classified by its abelianisation which relates directly to the first homology group. (Wikipedia).

Video thumbnail

Abel formula

This is one of my all-time favorite differential equation videos!!! :D Here I'm actually using the Wronskian to actually find a nontrivial solution to a second-order differential equation. This is amazing because it brings the concept of the Wronskian back to life! And as they say, you won

From playlist Differential equations

Video thumbnail

Every Group of Order Five or Smaller is Abelian Proof

Please Subscribe here, thank you!!! https://goo.gl/JQ8Nys Every Group of Order Five or Smaller is Abelian Proof. In this video we prove that if G is a group whose order is five or smaller, then G must be abelian.

From playlist Abstract Algebra

Video thumbnail

Small Height and Infinite Non-Abelian Extensions - Philipp Habegger

Philipp Habegger University of Frankfurt; Member, School of Mathematics April 8, 2013 he Weil height measures the “complexity” of an algebraic number. It vanishes precisely at 0 and at the roots of unity. Moreover, a finite field extension of the rationals contains no elements of arbitrari

From playlist Mathematics

Video thumbnail

FIT2.3.3. Algebraic Extensions

Field Theory: We define an algebraic extension of a field F and show that successive algebraic extensions are also algebraic. This gives a useful criterion for checking algberaic elements. We finish with algebraic closures.

From playlist Abstract Algebra

Video thumbnail

Homomorphisms in abstract algebra

In this video we add some more definition to our toolbox before we go any further in our study into group theory and abstract algebra. The definition at hand is the homomorphism. A homomorphism is a function that maps the elements for one group to another whilst maintaining their structu

From playlist Abstract algebra

Video thumbnail

Derived Categories part 1

We give a buttload of definitions for morphisms on various categories of complexes. The derived category of an abelian category is a category whose objects are cochain complexes and whose morphisms I describe in this video.

From playlist Derived Categories

Video thumbnail

Differential Equations | Abel's Theorem

We present Abel's Theorem with a proof. http://www.michael-penn.net

From playlist Differential Equations

Video thumbnail

Abstract Algebra - 11.1 Fundamental Theorem of Finite Abelian Groups

We complete our study of Abstract Algebra in the topic of groups by studying the Fundamental Theorem of Finite Abelian Groups. This tells us that every finite abelian group is a direct product of cyclic groups of prime-power order. Video Chapters: Intro 0:00 Before the Fundamental Theorem

From playlist Abstract Algebra - Entire Course

Video thumbnail

Group theory 17: Finite abelian groups

This lecture is part of a mathematics course on group theory. It shows that every finitely generated abelian group is a sum of cyclic groups. Correction: At 9:22 the generators should be g, h+ng not g, g+nh

From playlist Group theory

Video thumbnail

Andrew Wiles: Fermat's Last theorem: abelian and non-abelian approaches

The successful approach to solving Fermat's problem reflects a move in number theory from abelian to non-abelian arithmetic. This lecture was held by Abel Laurate Sir Andrew Wiles at The University of Oslo, May 25, 2016 and was part of the Abel Prize Lectures in connection with the Abel P

From playlist Sir Andrew J. Wiles

Video thumbnail

Polynomial groups, polynomial maps, dimension subgroups and related problems by L. R. Vermani

PROGRAM GROUP ALGEBRAS, REPRESENTATIONS AND COMPUTATION ORGANIZERS: Gurmeet Kaur Bakshi, Manoj Kumar and Pooja Singla DATE: 14 October 2019 to 23 October 2019 VENUE: Ramanujan Lecture Hall, ICTS Bangalore Determining explicit algebraic structures of semisimple group algebras is a fund

From playlist Group Algebras, Representations And Computation

Video thumbnail

Francesc Fité, Sato-Tate groups of abelian varieties of dimension up to 3

VaNTAGe seminar on April 7, 2020 License: CC-BY-NC-SA Closed captions provided by Jun Bo Lau.

From playlist The Sato-Tate conjecture for abelian varieties

Video thumbnail

CTNT 2022 - 100 Years of Chebotarev Density (Lecture 2) - by Keith Conrad

This video is part of a mini-course on "100 Years of Chebotarev Density" that was taught during CTNT 2022, the Connecticut Summer School and Conference in Number Theory. More about CTNT: https://ctnt-summer.math.uconn.edu/

From playlist CTNT 2022 - 100 Years of Chebotarev Density (by Keith Conrad)

Video thumbnail

Kevin Buzzard (lecture 4/20) Automorphic Forms And The Langlands Program [2017]

Full course playlist: https://www.youtube.com/playlist?list=PLhsb6tmzSpiysoRR0bZozub-MM0k3mdFR http://wwwf.imperial.ac.uk/~buzzard/MSRI/ Summer Graduate School Automorphic Forms and the Langlands Program July 24, 2017 - August 04, 2017 Kevin Buzzard (Imperial College, London) https://w

From playlist MSRI Summer School: Automorphic Forms And The Langlands Program, by Kevin Buzzard [2017]

Video thumbnail

Selmer groups and a Cassels-Tate pairing for finite Galois modules - Alexander Smith

Joint IAS/Princeton University Number Theory Seminar Topic: Selmer groups and a Cassels-Tate pairing for finite Galois modules Speraker: Alexander Smith Affiliation: Massachusetts Institute of Technology Date: February 25, 2021 For more video please visit http://video.ias.edu

From playlist Mathematics

Video thumbnail

Álvaro Lozano-Robledo: Recent progress in the classification of torsion subgroups of...

Abstract: This talk will be a survey of recent results and methods used in the classification of torsion subgroups of elliptic curves over finite and infinite extensions of the rationals, and over function fields. Recording during the meeting "Diophantine Geometry" the May 22, 2018 at th

From playlist Math Talks

Video thumbnail

Proof that f(a) = a^(-1) is a Group Isomorphism if G is Abelian

Proof that f(a) = a^(-1) is a Group Isomorphism if G is Abelian The book on amazon: https://amzn.to/3OUxpJw The pencils I used in this video: https://amzn.to/3bCpvpt The paper I used in this video: https://amzn.to/3OQ8nuM (the above links are my affiliate links) If you enjoyed this video

From playlist Solutions to Foundations of Higher Mathematics by Fletcher and Patty

Video thumbnail

Extending the Prym map - Samuel Grushevsky

Samuel Grushevsky Stony Brook University February 10, 2015 The Torelli map associates to a genus g curve its Jacobian - a gg-dimensional principally polarized abelian variety. It turns out, by the works of Mumford and Namikawa in the 1970s (resp. Alexeev and Brunyate in 2010s), that the T

From playlist Mathematics

Related pages

Group extension | Finite field | Local field | Class field theory | Topology | Kummer theory | Function field of an algebraic variety | Rational number | Cyclotomic field | Separable extension | Cyclic group | Galois group | Fundamental group | Abstract algebra | Algebraic curve | Solvable group | Galois extension | Kronecker–Weber theorem | Abelian group