UsefulLinks
Engineering
Electrical Engineering
Electronic Devices and Circuits
1. Introduction to Electronics
2. Semiconductor Physics
3. The p-n Junction Diode
4. Diode Applications and Circuits
5. Bipolar Junction Transistors (BJTs)
6. Field-Effect Transistors (FETs)
7. Single-Stage Amplifiers
8. Multistage Amplifiers
9. Frequency Response of Amplifiers
10. Operational Amplifiers
11. Feedback in Amplifiers
12. Oscillators
13. Power Amplifiers
14. Power Supply Circuits
9.
Frequency Response of Amplifiers
9.1.
Frequency Response Fundamentals
9.1.1.
Transfer Function Concept
9.1.2.
Poles and Zeros
9.1.2.1.
Pole Frequency Effects
9.1.2.2.
Zero Frequency Effects
9.1.3.
Bode Plot Construction
9.1.3.1.
Magnitude Plot
9.1.3.2.
Phase Plot
9.1.3.3.
Asymptotic Approximations
9.1.4.
Bandwidth Definition
9.1.4.1.
3-dB Bandwidth
9.1.4.2.
Gain-Bandwidth Product
9.2.
Low-Frequency Response
9.2.1.
Coupling Capacitor Effects
9.2.1.1.
High-Pass Filter Behavior
9.2.1.2.
Corner Frequency Calculation
9.2.2.
Bypass Capacitor Effects
9.2.2.1.
Emitter Bypass Capacitor
9.2.2.2.
Source Bypass Capacitor
9.2.3.
Low-Frequency Equivalent Circuits
9.2.4.
Dominant Pole Approximation
9.3.
High-Frequency Response
9.3.1.
BJT High-Frequency Model
9.3.1.1.
Base-Emitter Capacitance
9.3.1.2.
Base-Collector Capacitance
9.3.1.3.
Miller Effect
9.3.1.4.
Transit Time Effects
9.3.2.
FET High-Frequency Model
9.3.2.1.
Gate-Source Capacitance
9.3.2.2.
Gate-Drain Capacitance
9.3.2.3.
Miller Effect in FETs
9.3.3.
High-Frequency Equivalent Circuits
9.3.4.
Unity Gain Frequency
9.4.
Miller Effect
9.4.1.
Miller Theorem
9.4.2.
Input Miller Capacitance
9.4.3.
Output Miller Capacitance
9.4.4.
Miller Effect Compensation
9.5.
Frequency Response of Multistage Amplifiers
9.5.1.
Cascaded Pole Effects
9.5.2.
Bandwidth Shrinkage
9.5.3.
Dominant Pole Design
9.6.
Frequency Compensation Techniques
9.6.1.
Pole Splitting
9.6.2.
Lead Compensation
9.6.3.
Lag Compensation
Previous
8. Multistage Amplifiers
Go to top
Next
10. Operational Amplifiers