- Binary operations
- >
- Logical consequence
- >
- Theorems
- >
- Pythagorean theorem

- Classical geometry
- >
- Euclidean geometry
- >
- Euclidean plane geometry
- >
- Pythagorean theorem

- Discrete mathematics
- >
- Number theory
- >
- Diophantine equations
- >
- Pythagorean theorem

- Elementary mathematics
- >
- Elementary geometry
- >
- Euclidean plane geometry
- >
- Pythagorean theorem

- Fields of geometry
- >
- Elementary geometry
- >
- Euclidean plane geometry
- >
- Pythagorean theorem

- Fields of mathematics
- >
- Number theory
- >
- Diophantine equations
- >
- Pythagorean theorem

- Formal theories
- >
- Logical expressions
- >
- Theorems
- >
- Pythagorean theorem

- Geometry
- >
- Fields of geometry
- >
- Metric geometry
- >
- Pythagorean theorem

- Logic symbols
- >
- Logical expressions
- >
- Theorems
- >
- Pythagorean theorem

- Logical expressions
- >
- Propositions
- >
- Theorems
- >
- Pythagorean theorem

- Propositional calculus
- >
- Logical consequence
- >
- Theorems
- >
- Pythagorean theorem

Hypotenuse

In geometry, a hypotenuse is the longest side of a right-angled triangle, the side opposite the right angle. The length of the hypotenuse can be found using the Pythagorean theorem, which states that

Fermat's Last Theorem

In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, b, and c satisfy the equation an + bn = cn for any i

Pythagorean trigonometric identity

The Pythagorean trigonometric identity, also called simply the Pythagorean identity, is an identity expressing the Pythagorean theorem in terms of trigonometric functions. Along with the sum-of-angles

Spiral of Theodorus

In geometry, the spiral of Theodorus (also called square root spiral, Einstein spiral, Pythagorean spiral, or Pythagoras's snail) is a spiral composed of right triangles, placed edge-to-edge. It was n

Square root of 2

The square root of 2 (approximately 1.4142) is a positive real number that, when multiplied by itself, equals the number 2. It may be written in mathematics as or , and is an algebraic number. Technic

Pythagorean addition

In mathematics, Pythagorean addition is a binary operation on the real numbers that computes the length of the hypotenuse of a right triangle, given its two sides. According to the Pythagorean theorem

British flag theorem

In Euclidean geometry, the British flag theorem says that if a point P is chosen inside a rectangle ABCD then the sum of the squares of the Euclidean distances from P to two opposite corners of the re

Alpha max plus beta min algorithm

The alpha max plus beta min algorithm is a high-speed approximation of the square root of the sum of two squares. The square root of the sum of two squares, also known as Pythagorean addition, is a us

Euclidean distance

In mathematics, the Euclidean distance between two points in Euclidean space is the length of a line segment between the two points.It can be calculated from the Cartesian coordinates of the points us

Pythagorean theorem

In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose

Pythagorean triple

A Pythagorean triple consists of three positive integers a, b, and c, such that a2 + b2 = c2. Such a triple is commonly written (a, b, c), and a well-known example is (3, 4, 5). If (a, b, c) is a Pyth

Pythagorean quadruple

A Pythagorean quadruple is a tuple of integers a, b, c, and d, such that a2 + b2 + c2 = d2. They are solutions of a Diophantine equation and often only positive integer values are considered. However,

Pythagorean Triangles

Pythagorean Triangles is a book on right triangles, the Pythagorean theorem, and Pythagorean triples. It was originally written in the Polish language by Wacław Sierpiński (titled Trójkąty pitagorejsk

Euler brick

In mathematics, an Euler brick, named after Leonhard Euler, is a rectangular cuboid whose edges and face diagonals all have integer lengths. A primitive Euler brick is an Euler brick whose edge length

Boolean Pythagorean triples problem

The Boolean Pythagorean triples problem is a problem from Ramsey theory about whether the positive integers can be colored red and blue so that no Pythagorean triples consist of all red or all blue me

© 2023 Useful Links.