Category: E (mathematical constant)

List of representations of e
The mathematical constant e can be represented in a variety of ways as a real number. Since e is an irrational number (see proof that e is irrational), it cannot be represented as the quotient of two
Lindemann–Weierstrass theorem
In transcendental number theory, the Lindemann–Weierstrass theorem is a result that is very useful in establishing the transcendence of numbers. It states the following: Lindemann–Weierstrass theorem
Euler's identity
In mathematics, Euler's identity (also known as Euler's equation) is the equality where e is Euler's number, the base of natural logarithms,i is the imaginary unit, which by definition satisfies i2 =
Natural logarithm
The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718281828459. The natural logar
Proof that e is irrational
The number e was introduced by Jacob Bernoulli in 1683. More than half a century later, Euler, who had been a student of Jacob's younger brother Johann, proved that e is irrational; that is, that it c
Exponential function
The exponential function is a mathematical function denoted by or (where the argument x is written as an exponent). Unless otherwise specified, the term generally refers to the positive-valued functio
E (mathematical constant)
The number e, also known as Euler's number, is a mathematical constant approximately equal to 2.71828, which can be characterized in many ways: * It is the base of the natural logarithms * It is the
Euler's formula
Euler's formula, named after Leonhard Euler, is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential