# Category: Chiral polyhedra

Snub dodecahedron
In geometry, the snub dodecahedron, or snub icosidodecahedron, is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed by two or more types of regular polygon faces. T
Snub cube
In geometry, the snub cube, or snub cuboctahedron, is an Archimedean solid with 38 faces: 6 squares and 32 equilateral triangles. It has 60 edges and 24 vertices. It is a chiral polyhedron; that is, i
Gyroelongated pentagonal bicupola
In geometry, the gyroelongated pentagonal bicupola is one of the Johnson solids (J46). As the name suggests, it can be constructed by gyroelongating a pentagonal bicupola (J30 or J31) by inserting a d
Gyroelongated pentagonal cupolarotunda
In geometry, the gyroelongated pentagonal cupolarotunda is one of the Johnson solids (J47). As the name suggests, it can be constructed by gyroelongating a pentagonal cupolarotunda (J32 or J33) by ins
Gyroelongated square bicupola
In geometry, the gyroelongated square bicupola is one of the Johnson solids (J45). As the name suggests, it can be constructed by gyroelongating a square bicupola (J28 or J29) by inserting an octagona
Pentagonal hexecontahedron
In geometry, a pentagonal hexecontahedron is a Catalan solid, dual of the snub dodecahedron. It has two distinct forms, which are mirror images (or "enantiomorphs") of each other. It has 92 vertices t
Gyroelongated pentagonal birotunda
In geometry, the gyroelongated pentagonal birotunda is one of the Johnson solids (J48). As the name suggests, it can be constructed by gyroelongating a pentagonal birotunda (either J34 or the icosidod
Gyroelongated triangular bicupola
In geometry, the gyroelongated triangular bicupola is one of the Johnson solids (J44). As the name suggests, it can be constructed by gyroelongating a triangular bicupola (either triangular orthobicup
Pentagonal icositetrahedron
In geometry, a pentagonal icositetrahedron or pentagonal icosikaitetrahedron is a Catalan solid which is the dual of the snub cube. In crystallography it is also called a gyroid. It has two distinct f
Compound of five tetrahedra
The compound of five tetrahedra is one of the five regular polyhedral compounds. This compound polyhedron is also a stellation of the regular icosahedron. It was first described by Edmund Hess in 1876