Group theory

Generating set of a group

In abstract algebra, a generating set of a group is a subset of the group set such that every element of the group can be expressed as a combination (under the group operation) of finitely many elements of the subset and their inverses. In other words, if S is a subset of a group G, then ⟨S⟩, the subgroup generated by S, is the smallest subgroup of G containing every element of S, which is equal to the intersection over all subgroups containing the elements of S; equivalently, ⟨S⟩ is the subgroup of all elements of G that can be expressed as the finite product of elements in S and their inverses. (Note that inverses are only needed if the group is infinite; in a finite group, the inverse of an element can be expressed as a power of that element.) If G = ⟨S⟩, then we say that S generates G, and the elements in S are called generators or group generators. If S is the empty set, then ⟨S⟩ is the trivial group {e}, since we consider the empty product to be the identity. When there is only a single element x in S, ⟨S⟩ is usually written as ⟨x⟩. In this case, ⟨x⟩ is the cyclic subgroup of the powers of x, a cyclic group, and we say this group is generated by x. Equivalent to saying an element x generates a group is saying that ⟨x⟩ equals the entire group G. For finite groups, it is also equivalent to saying that x has order |G|. A group may need an infinite number of generators. For example the additive group of rational numbers Q is not finitely generated. It is generated by the inverses of all the integers, but any finite number of these generators can be removed from the generating set without it ceasing to be a generating set. In a case like this, all the elements in a generating set are nevertheless "non-generating elements", as are in fact all the elements of the whole group − see below. If G is a topological group then a subset S of G is called a set of topological generators if ⟨S⟩ is dense in G, i.e. the closure of ⟨S⟩ is the whole group G. (Wikipedia).

Generating set of a group
Video thumbnail

Definition of a group Lesson 24

In this video we take our first look at the definition of a group. It is basically a set of elements and the operation defined on them. If this set of elements and the operation defined on them obey the properties of closure and associativity, and if one of the elements is the identity el

From playlist Abstract algebra

Video thumbnail

Group Theory I Introduction

A set and a binary operation will form a group if four conditions are satisfied. We take a look at the conditions of closure, associativity, identity and inverse.

From playlist Foundational Math

Video thumbnail

Determine Sets Given Using Set Notation (Ex 2)

This video provides examples to describing a set given the set notation of a set.

From playlist Sets (Discrete Math)

Video thumbnail

Determine Generating Functions of Sequences from Known Generating Functions (Part 2)

This video explains how to determine generating functions of sequences from known generating functions. mathispower4u.com

From playlist Additional Topics: Generating Functions and Intro to Number Theory (Discrete Math)

Video thumbnail

Determine Sequences from Given Generating Functions (Part 1)

This video explains how to determine sequences from generating functions. mathispower4u.com

From playlist Additional Topics: Generating Functions and Intro to Number Theory (Discrete Math)

Video thumbnail

Quotient groups

The idea of a quotient group follows easily from cosets and Lagrange's theorem. In this video, we start with a normal subgroup and develop the idea of a quotient group, by viewing each coset (together with the normal subgroup) as individual mathematical objects in a set. This set, under

From playlist Abstract algebra

Video thumbnail

What is a Power Set? | Set Theory, Subsets, Cardinality

What is a power set? A power set of any set A is the set containing all subsets of the given set A. For example, if we have the set A = {1, 2, 3}. Then the power set of A, denoted P(A), is {{ }, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} where { } is the empty set. We also know that

From playlist Set Theory

Video thumbnail

Groups and subgroups -- Proofs

This lecture is on Introduction to Higher Mathematics (Proofs). For more see http://calculus123.com.

From playlist Proofs

Video thumbnail

Acylindrically hyperbolic structures on groups - Balasubramanya

Women and Mathematics Title: Acylindrically hyperbolic structures on groups Speaker: Sahana Hassan Balasubramanya Affiliation: Vanderbilt University Date: May 23, 2017 For more videos, please visit http://video.ias.edu

From playlist Mathematics

Video thumbnail

Sahana Balasubramanya: Quasi-parabolic structures on groups

CIRM VIRTUAL EVENT Recorded during the meeting"Virtual Geometric Group Theory conference " the May 22, 2020 by the Centre International de Rencontres Mathématiques (Marseille, France) Filmmaker: Guillaume Hennenfent Find this video and other talks given by worldwide mathematicians on CIRM

From playlist Virtual Conference

Video thumbnail

GAP - 2 by Alexander Hulpke

DATE & TIME 05 November 2016 to 14 November 2016 VENUE Ramanujan Lecture Hall, ICTS Bangalore Computational techniques are of great help in dealing with substantial, otherwise intractable examples, possibly leading to further structural insights and the detection of patterns in many abstra

From playlist Group Theory and Computational Methods

Video thumbnail

Harald Helfgott: The diameter of the symmetric group: ideas and tools

Abstract: Given a finite group G and a set A of generators, the diameter diam(Γ(G,A)) of the Cayley graph Γ(G,A) is the smallest ℓ such that every element of G can be expressed as a word of length at most ℓ in A∪A−1. We are concerned with bounding diam(G):=maxA diam(Γ(G,A)). It has long be

From playlist Jean-Morlet Chair - Lemanczyk/Ferenczi

Video thumbnail

Adam Piggott & Murray Elder Double Header: Geodesics in Groups

Double header seminar by two SMRI domestic visitors: Adam Piggott (Australian National University) ‘Stubborn conjectures concerning rewriting systems, geodesic normal forms and geodetic graphs’ & Murray Elder (University of Technology Sydney) ‘Which groups have polynomial geodesic growth

From playlist SMRI Seminars

Video thumbnail

Plenary lecture 2 by Emmanuel Breuillard - Part 1

Geometry Topology and Dynamics in Negative Curvature URL: https://www.icts.res.in/program/gtdnc DATES: Monday 02 Aug, 2010 - Saturday 07 Aug, 2010 VENUE : Raman Research Institute, Bangalore DESCRIPTION: This is An ICM Satellite Conference. The conference intends to bring together ma

From playlist Geometry Topology and Dynamics in Negative Curvature

Video thumbnail

Visual Group Theory, Lecture 2.1: Cyclic and abelian groups

Visual Group Theory, Lecture 2.1: Cyclic and abelian groups In this lecture, we introduce two important families of groups: (1) "cyclic groups", which are those that can be generated by a single element, and (2) "abelian groups", which are those for which multiplication commutes. Addition

From playlist Visual Group Theory

Video thumbnail

(Some) Generic Properties of (Some) Infinite Groups - Igor Rivin

(Some) Generic Properties of (Some) Infinite Groups - Igor Rivin Temple University; Member, School of Mathematics November 29, 2010 This talk will be a biased survey of recent work on various properties of elements of infinite groups, which can be shown to hold with high probability once t

From playlist Mathematics

Video thumbnail

Group actions on 1-manifolds: A list of very concrete open questions – Andrés Navas – ICM2018

Dynamical Systems and Ordinary Differential Equations Invited Lecture 9.8 Group actions on 1-manifolds: A list of very concrete open questions Andrés Navas Abstract: Over the last four decades, group actions on manifolds have deserved much attention by people coming from different fields

From playlist Dynamical Systems and ODE

Video thumbnail

What is a Group? | Abstract Algebra

Welcome to group theory! In today's lesson we'll be going over the definition of a group. We'll see the four group axioms in action with some examples, and some non-examples as well which violate the axioms and are thus not groups. In a fundamental way, groups are structures built from s

From playlist Abstract Algebra

Video thumbnail

Volodymyr Nekrashevych: Contracting self-similar groups and conformal dimension

HYBRID EVENT Recorded during the meeting "Advancing Bridges in Complex Dynamics" the September 20, 2021 by the Centre International de Rencontres Mathématiques (Marseille, France) Filmmaker: Guillaume Hennenfent Find this video and other talks given by worldwide mathematicians on CIRM'

From playlist Dynamical Systems and Ordinary Differential Equations

Related pages

Order (group theory) | Bézout's identity | Group extension | Closure (topology) | Free group | Topological group | Isomorphism | Group (mathematics) | Permutation | Root of unity | Greatest common divisor | Trivial group | Symmetric group | Group isomorphism | Multiplicative group of integers modulo n | Rational number | Semigroup | Quotient group | Finite group | Frattini subgroup | Natural number | Coprime integers | Dihedral group | Modular arithmetic | Integer | Polygon | Cyclic group | Normal subgroup | Cayley graph | Primitive element (finite field) | Subset | Subgroup | Abstract algebra | Finitely generated abelian group | Inverse element | Presentation of a group | Abelian group | Monoid