# Affine cipher

The affine cipher is a type of monoalphabetic substitution cipher, where each letter in an alphabet is mapped to its numeric equivalent, encrypted using a simple mathematical function, and converted back to a letter. The formula used means that each letter encrypts to one other letter, and back again, meaning the cipher is essentially a standard substitution cipher with a rule governing which letter goes to which. As such, it has the weaknesses of all substitution ciphers. Each letter is enciphered with the function (ax + b) mod 26, where b is the magnitude of the shift. (Wikipedia).

Affine Cipher on Maple

How to encrypt and decrypt the affine cipher using Maple software. Code from Into to Crypto and Coding Theory 2nd ed. by W. Trappe and LC Washington.

From playlist Cryptography and Coding Theory

Affine Cipher - Decryption (Known Plaintext Attack)

In this video I talk about ways to decrypt the Affine Cipher when the key is NOT known. Specifically, I go over an example of the known plaintext attack. 3^(-1) = 9 (mod 26) math worked out (Euclidean Algorithm): 1. Forwards: 26 = 3(8) + 2 3 = 2(1) + 1 2. Backwords: 1 = 3 -

From playlist Cryptography and Coding Theory

What are affine transformations?

Algorithm Archive: https://www.algorithm-archive.org/contents/affine_transformations/affine_transformations.html Github sponsors (Patreon for code): https://github.com/sponsors/leios Patreon: https://www.patreon.com/leiosos Twitch: https://www.twitch.tv/leioslabs Discord: https://discor

From playlist Algorithm Archive

Novel Algebraic Operations for Affine Geometry | Algebraic Calculus One | Wild Egg

We introduce some novel conventions to help us set up the foundations of affine geometry. We learn about differences of points, sums of points and vectors, affine combinations and vector proportions. And then use these to state a number of important results from affine geometry, including

From playlist Algebraic Calculus One from Wild Egg

Affine and mod-affine varieties in arithmetic geometry. - Charles - Workshop 2 - CEB T2 2019

François Charles (Université Paris-Sud) / 24.06.2019 Affine and mod-affine varieties in arithmetic geometry. We will explain how studying arithmetic versions of affine schemes and their bira- tional modifications leads to a generalization to arbitrary schemes of both Fekete’s theorem on

From playlist 2019 - T2 - Reinventing rational points

Combinatorial affine sieve - Alireza Salehi Golsefidy

Speaker: Alireza Salehi Golsefidy (UCSD) Title: Combinatorial affine sieve Abstract: In this talk the general setting of affine sieve will be presented. Next I will explain the Bourgain-Gamburd-Sarnak method on proving affine sieve in the presence of certain spectral gap. Finally I will sa

From playlist Mathematics

Affine Transformations — Topic 27 of Machine Learning Foundations

In this video we use hands-on code demos in NumPy to carry out affine transformations, a particular type of matrix transformation that may adjust angles or distances between vectors, but preserves parallelism. These operations can transform the target tensor in a variety of ways including

From playlist Linear Algebra for Machine Learning

algebraic geometry 5 Affine space and the Zariski topology

This lecture is part of an online algebraic geometry course, based on chapter I of "Algebraic geometry" by Hartshorne. It covers the definition of affine space and its Zariski topology.

From playlist Algebraic geometry I: Varieties

Cryptanalysis of Classical Ciphers

Cryptography and Network Security by Prof. D. Mukhopadhyay, Department of Computer Science and Engineering, IIT Kharagpur. For more details on NPTEL visit http://nptel.iitm.ac.in

From playlist Computer - Cryptography and Network Security

Classical Cryptosystems

Cryptography and Network Security by Prof. D. Mukhopadhyay, Department of Computer Science and Engineering, IIT Kharagpur. For more details on NPTEL visit http://nptel.iitm.ac.in

From playlist Computer - Cryptography and Network Security

Calculus and affine geometry of the magical parabola | Algebraic Calc and dCB curves 3 | Wild Egg

Algebraic Calculus naturally lives in affine geometry, not Euclidean geometry. Affine geometry is the geometry of parallelism, or (almost the same thing) --- the geometry of pure linear algebra. The parabola is characterized projectively in this geometry as the unique conic which is tangen

From playlist Algebraic Calculus One Info

Math for Liberal Studies - Lecture 3.8.1 Affine and Multiplicative Ciphers

This is the first video lecture for Math for Liberal Studies, Section 3.8: More Modular Arithmetic and Public-Key Cryptography. In this lecture, I talk about how we can use multiplication in modular arithmetic to construct new ciphers. I also discuss the difficulty in finding the decryptio

From playlist Math for Liberal Studies Lectures

Group Theory for Cryptology by Carlo Scoppola

PROGRAM GROUP ALGEBRAS, REPRESENTATIONS AND COMPUTATION ORGANIZERS: Gurmeet Kaur Bakshi, Manoj Kumar and Pooja Singla DATE: 14 October 2019 to 23 October 2019 VENUE: Ramanujan Lecture Hall, ICTS Bangalore Determining explicit algebraic structures of semisimple group algebras is a fund

From playlist Group Algebras, Representations And Computation

Shannons Theory (Contd...2)

Cryptography and Network Security by Prof. D. Mukhopadhyay, Department of Computer Science and Engineering, IIT Kharagpur. For more details on NPTEL visit http://nptel.iitm.ac.in

From playlist Computer - Cryptography and Network Security

algebraic geometry 17 Affine and projective varieties

This lecture is part of an online algebraic geometry course, based on chapter I of "Algebraic geometry" by Hartshorne. It covers the relation between affine and projective varieties, with some examples such as a cubic curve and the twisted cubic.

From playlist Algebraic geometry I: Varieties

Block Cipher Standards (AES)

Cryptography and Network Security by Prof. D. Mukhopadhyay, Department of Computer Science and Engineering, IIT Kharagpur. For more details on NPTEL visit http://nptel.iitm.ac.in

From playlist Computer - Cryptography and Network Security