Finite groups | Properties of groups

In mathematics, in the area of abstract algebra known as group theory, an A-group is a type of group that is similar to abelian groups. The groups were first studied in the 1940s by Philip Hall, and are still studied today. A great deal is known about their structure. (Wikipedia).

Definition of a group Lesson 24

In this video we take our first look at the definition of a group. It is basically a set of elements and the operation defined on them. If this set of elements and the operation defined on them obey the properties of closure and associativity, and if one of the elements is the identity el

From playlist Abstract algebra

A group is (in a sense) the simplest structure in which we can do the familiar tasks associated with "algebra." First, in this video, we review the definition of a group.

From playlist Modern Algebra - Chapter 15 (groups)

What is a Group? | Abstract Algebra

Welcome to group theory! In today's lesson we'll be going over the definition of a group. We'll see the four group axioms in action with some examples, and some non-examples as well which violate the axioms and are thus not groups. In a fundamental way, groups are structures built from s

From playlist Abstract Algebra

Abstract Algebra: We define the notion of a subgroup and provide various examples. We also consider cyclic subgroups and subgroups generated by subsets in a given group G. Example include A4 and D8. U.Reddit course materials available at http://ureddit.com/class/23794/intro-to-group-

From playlist Abstract Algebra

Abstract Algebra | Definition of a Group and Basic Examples

We present the definition of a group and give a few basic example s of abelian groups. http://www.michael-penn.net

From playlist Abstract Algebra

Definition of a Group and Examples of Groups

Please Subscribe here, thank you!!! https://goo.gl/JQ8Nys Definition of a Group and Examples of Groups

From playlist Abstract Algebra

Abstract Algebra | The notion of a subgroup.

We present the definition of a subgroup and give some examples. http://www.michael-penn.net http://www.randolphcollege.edu/mathematics/

From playlist Abstract Algebra

Group Definition (expanded) - Abstract Algebra

The group is the most fundamental object you will study in abstract algebra. Groups generalize a wide variety of mathematical sets: the integers, symmetries of shapes, modular arithmetic, NxM matrices, and much more. After learning about groups in detail, you will then be ready to contin

From playlist Abstract Algebra

Definition of a Subgroup in Abstract Algebra with Examples of Subgroups

Please Subscribe here, thank you!!! https://goo.gl/JQ8Nys Definition of a Subgroup in Abstract Algebra with Examples of Subgroups

From playlist Abstract Algebra

Lie Groups and Lie Algebras: Lesson 39 - The Universal Covering Group

Lie Groups and Lie Algebras: Lesson 39 - The Universal Covering Group We are finally in position to understand the nature of the Universal Covering Group and its connection to all the Lie groups which share a single Lie algebra. This is a critical lecture! In this lecture we simply state

From playlist Lie Groups and Lie Algebras

This lecture is part of an online graduate course on Lie groups. We give an introductory survey of Lie groups theory by describing some examples of Lie groups in low dimensions. Some recommended books: Lie algebras and Lie groups by Serre (anything by Serre is well worth reading) Repre

From playlist Lie groups

Why Are Prejudice and Conflict So Common? | Understanding the Mysteries of Human Behavior

It's no wonder discrimination seems to be everywhere: splitting people into two groups, even at random, makes them subconsciously dislike each other. A sense of competition can exaggerate these feelings. Pick up your tools; we've got some bridge building to do. Presented by Mark Leary Lea

From playlist Latest Uploads

Lie Groups and Lie Algebras: Lesson 38 - Preparation for the concept of a Universal Covering Group

Lie Groups and Lie Algebras: Lesson 38 - Preparation for the Universal Covering Group concept In this lesson we examine another amazing connection between the algebraic properties of the Lie groups with topological properties. We will lay the foundation to understand how discrete invaria

From playlist Lie Groups and Lie Algebras

Grothendieck Pairs and Profinite Rigidity - Martin Bridson

Arithmetic Groups Topic: Grothendieck Pairs and Profinite Rigidity Speaker: Martin Bridson Affiliation: Oxford University Date: January 26, 2022 If a monomorphism of abstract groups H↪G induces an isomorphism of profinite completions, then (G,H) is called a Grothendieck pair, recalling t

From playlist Mathematics

Regular permutation groups and Cayley graphs

Cheryl Praeger (University of Western Australia). Plenary Lecture from the 1st PRIMA Congress, 2009. Plenary Lecture 11. Abstract: Regular permutation groups are the 'smallest' transitive groups of permutations, and have been studied for more than a century. They occur, in particular, as

From playlist PRIMA2009

On the pioneering works of Professor I.B.S. Passi by Sugandha Maheshwari

PROGRAM GROUP ALGEBRAS, REPRESENTATIONS AND COMPUTATION ORGANIZERS: Gurmeet Kaur Bakshi, Manoj Kumar and Pooja Singla DATE: 14 October 2019 to 23 October 2019 VENUE: Ramanujan Lecture Hall, ICTS Bangalore Determining explicit algebraic structures of semisimple group algebras is a fund

From playlist Group Algebras, Representations And Computation

Vincent Guirardel: Natural subgroups of automorphisms

Find this video and other talks given by worldwide mathematicians on CIRM's Audiovisual Mathematics Library: http://library.cirm-math.fr. And discover all its functionalities: - Chapter markers and keywords to watch the parts of your choice in the video - Videos enriched with abstracts, b

From playlist Algebra

Gilbert Levitt - Vertex finiteness for relatively hyperbolic groups

Gilbert Levitt (University of Caen, France) Given a finitely generated group G, we consider all splittings of G over subgroups in a fixed family (such as finite groups, cyclic groups, abelian groups). We discuss whether it is the case that only finitely many vertex groups appear, up to is

From playlist T1-2014 : Random walks and asymptopic geometry of groups.

Group actions on 1-manifolds: A list of very concrete open questions – Andrés Navas – ICM2018

Dynamical Systems and Ordinary Differential Equations Invited Lecture 9.8 Group actions on 1-manifolds: A list of very concrete open questions Andrés Navas Abstract: Over the last four decades, group actions on manifolds have deserved much attention by people coming from different fields

From playlist Dynamical Systems and ODE

Group Theory: The Center of a Group G is a Subgroup of G Proof

Please Subscribe here, thank you!!! https://goo.gl/JQ8Nys Group Theory: The Center of a Group G is a Subgroup of G Proof

From playlist Abstract Algebra