Useful Links
1. Introduction to Algebraic Structures
2. Definition of a Group
3. Fundamental Examples of Groups
4. Order of Elements and Groups
5. Subgroups
6. Cyclic Groups
7. Permutation Groups
8. Cosets and Lagrange's Theorem
9. Normal Subgroups and Quotient Groups
10. Group Homomorphisms
11. The Isomorphism Theorems
12. Group Actions
13. The Sylow Theorems
14. Direct Products and Sums
15. Structure of Finite Abelian Groups
16. Solvable and Nilpotent Groups
17. Composition Series and Jordan-Hölder Theorem
18. Free Groups and Presentations
19. Semidirect Products
20. Introduction to Representation Theory
21. Applications of Group Theory
  1. Mathematics

Group Theory

1. Introduction to Algebraic Structures
2. Definition of a Group
3. Fundamental Examples of Groups
4. Order of Elements and Groups
5. Subgroups
6. Cyclic Groups
7. Permutation Groups
8. Cosets and Lagrange's Theorem
9. Normal Subgroups and Quotient Groups
10. Group Homomorphisms
11. The Isomorphism Theorems
12. Group Actions
13. The Sylow Theorems
14. Direct Products and Sums
15. Structure of Finite Abelian Groups
16. Solvable and Nilpotent Groups
17. Composition Series and Jordan-Hölder Theorem
18. Free Groups and Presentations
19. Semidirect Products
20. Introduction to Representation Theory
21. Applications of Group Theory
  1. Composition Series and Jordan-Hölder Theorem
    1. Composition Series
      1. Definition and Examples
        1. Composition Factors
          1. Simple Groups in Composition Series
          2. Jordan-Hölder Theorem
            1. Statement and Proof
              1. Uniqueness of Composition Factors
              2. Refinement Theorems
                1. Schreier Refinement Theorem
                  1. Zassenhaus Lemma

                Previous

                16. Solvable and Nilpotent Groups

                Go to top

                Next

                18. Free Groups and Presentations

                © 2025 Useful Links. All rights reserved.

                About•Bluesky•X.com