Category: Moonshine theory

In mathematics, Felix Klein's j-invariant or j function, regarded as a function of a complex variable τ, is a modular function of weight zero for SL(2, Z) defined on the upper half-plane of complex nu
Leech lattice
In mathematics, the Leech lattice is an even unimodular lattice Λ24 in 24-dimensional Euclidean space, which is one of the best models for the kissing number problem. It was discovered by John Leech.
Monster Lie algebra
In mathematics, the monster Lie algebra is an infinite-dimensional generalized Kac–Moody algebra acted on by the monster group, which was used to prove the monstrous moonshine conjectures.
Monster group
In the area of abstract algebra known as group theory, the monster group M (also known as the Fischer–Griess monster, or the friendly giant) is the largest sporadic simple group, having order   246 ·
Kac–Moody algebra
In mathematics, a Kac–Moody algebra (named for Victor Kac and Robert Moody, who independently and simultaneously discovered them in 1968) is a Lie algebra, usually infinite-dimensional, that can be de
Monstrous moonshine
In mathematics, monstrous moonshine, or moonshine theory, is the unexpected connection between the monster group M and modular functions, in particular, the j function. The term was coined by John Con
In mathematics, II25,1 is the even 26-dimensional Lorentzian unimodular lattice. It has several unusual properties, arising from Conway's discovery that it has a norm zero Weyl vector. In particular i
Supersingular prime (moonshine theory)
In the mathematical branch of moonshine theory, a supersingular prime is a prime number that divides the order of the Monster group M, which is the largest sporadic simple group. There are precisely f