Integral calculus | Definitions of mathematical integration | Mathematical finance | Stochastic calculus

Stochastic calculus

Stochastic calculus is a branch of mathematics that operates on stochastic processes. It allows a consistent theory of integration to be defined for integrals of stochastic processes with respect to stochastic processes. This field was created and started by the Japanese mathematician Kiyoshi Itô during World War II. The best-known stochastic process to which stochastic calculus is applied is the Wiener process (named in honor of Norbert Wiener), which is used for modeling Brownian motion as described by Louis Bachelier in 1900 and by Albert Einstein in 1905 and other physical diffusion processes in space of particles subject to random forces. Since the 1970s, the Wiener process has been widely applied in financial mathematics and economics to model the evolution in time of stock prices and bond interest rates. The main flavours of stochastic calculus are the Itô calculus and its variational relative the Malliavin calculus. For technical reasons the Itô integral is the most useful for general classes of processes, but the related Stratonovich integral is frequently useful in problem formulation (particularly in engineering disciplines). The Stratonovich integral can readily be expressed in terms of the Itô integral. The main benefit of the Stratonovich integral is that it obeys the usual chain rule and therefore does not require Itô's lemma. This enables problems to be expressed in a coordinate system invariant form, which is invaluable when developing stochastic calculus on manifolds other than Rn.The dominated convergence theorem does not hold for the Stratonovich integral; consequently it is very difficult to prove results without re-expressing the integrals in Itô form. (Wikipedia).

Video thumbnail

Basic stochastic simulation b: Stochastic simulation algorithm

(C) 2012-2013 David Liao (lookatphysics.com) CC-BY-SA Specify system Determine duration until next event Exponentially distributed waiting times Determine what kind of reaction next event will be For more information, please search the internet for "stochastic simulation algorithm" or "kin

From playlist Probability, statistics, and stochastic processes

Video thumbnail

Stochastic Normalizing Flows

Introduction to the paper https://arxiv.org/abs/2002.06707

From playlist Research

Video thumbnail

Jana Cslovjecsek: Efficient algorithms for multistage stochastic integer programming using proximity

We consider the problem of solving integer programs of the form min {c^T x : Ax = b; x geq 0}, where A is a multistage stochastic matrix. We give an algorithm that solves this problem in fixed-parameter time f(d; ||A||_infty) n log^O(2d) n, where f is a computable function, d is the treed

From playlist Workshop: Parametrized complexity and discrete optimization

Video thumbnail

21. Stochastic Differential Equations

MIT 18.S096 Topics in Mathematics with Applications in Finance, Fall 2013 View the complete course: http://ocw.mit.edu/18-S096F13 Instructor: Choongbum Lee This lecture covers the topic of stochastic differential equations, linking probability theory with ordinary and partial differential

From playlist MIT 18.S096 Topics in Mathematics w Applications in Finance

Video thumbnail

Prob & Stats - Markov Chains (8 of 38) What is a Stochastic Matrix?

Visit http://ilectureonline.com for more math and science lectures! In this video I will explain what is a stochastic matrix. Next video in the Markov Chains series: http://youtu.be/YMUwWV1IGdk

From playlist iLecturesOnline: Probability & Stats 3: Markov Chains & Stochastic Processes

Video thumbnail

Dr Lukasz Szpruch, University of Edinburgh

Bio I am a Lecturer at the School of Mathematics, University of Edinburgh. Before moving to Scotland I was a Nomura Junior Research Fellow at the Institute of Mathematics, University of Oxford, and a member of Oxford-Man Institute for Quantitative Finance. I hold a Ph.D. in mathematics fr

From playlist Short Talks

Video thumbnail

Iterative stochastic numerical methods for statistical sampling: Professor Ben Leimkuhler

I study the design, analysis and implementation of algorithms for time-dependent phenomena and modelling for problems in engineering and the sciences. My previous works have helped to establish the foundations of molecular simulation, providing efficient deterministic and stochastic numeri

From playlist Data science classes

Video thumbnail

Stochastic density functional theory....(Lecture 01) by David Dean

ORGANIZERS: Abhishek Dhar and Sanjib Sabhapandit DATE: 27 June 2018 to 13 July 2018 VENUE: Ramanujan Lecture Hall, ICTS Bangalore This advanced level school is the ninth in the series. This is a pedagogical school, aimed at bridging the gap between masters-level courses and topics in

From playlist Bangalore School on Statistical Physics - IX (2018)

Video thumbnail

Markov processes and applications-3 by Hugo Touchette

PROGRAM : BANGALORE SCHOOL ON STATISTICAL PHYSICS - XII (ONLINE) ORGANIZERS : Abhishek Dhar (ICTS-TIFR, Bengaluru) and Sanjib Sabhapandit (RRI, Bengaluru) DATE : 28 June 2021 to 09 July 2021 VENUE : Online Due to the ongoing COVID-19 pandemic, the school will be conducted through online

From playlist Bangalore School on Statistical Physics - XII (ONLINE) 2021

Video thumbnail

Yier Lin (Columbia) -- Short time large deviations of the KPZ equation

We establish the Freidlin--Wentzell Large Deviation Principle (LDP) for the Stochastic Heat Equation with multiplicative noise in one spatial dimension. That is, we introduce a small parameter $\sqrt{\epsilon}$ to the noise, and establish an LDP for the trajectory of the solution. Such a F

From playlist Columbia SPDE Seminar

Video thumbnail

Francois Baccelli: High dimensional stochastic geometry in the Shannon regime

This talk will focus on Euclidean stochastic geometry in the Shannon regime. In this regime, the dimension n of the Euclidean space tends to infinity, point processes have intensities which are exponential functions of n, and the random compact of interest sets have diameters of order squa

From playlist Workshop: High dimensional spatial random systems

Video thumbnail

1 2 Overview

BEM1105x Course Playlist - https://www.youtube.com/playlist?list=PL8_xPU5epJdfCxbRzxuchTfgOH1I2Ibht Produced in association with Caltech Academic Media Technologies. ©2020 California Institute of Technology

From playlist BEM1105x Course - Prof. Jakša Cvitanić

Related pages

Wiener process | Black–Scholes model | Mathematical finance | Semimartingale | Quadratic variation | Stochastic process | Geometric Brownian motion | Mathematics | Brownian motion | Dominated convergence theorem | Stratonovich integral | Albert Einstein | Chain rule | Stochastic differential equation | Itô calculus | Itô's lemma | Malliavin calculus