Lie groups | Euclidean symmetries

Euclidean group

In mathematics, a Euclidean group is the group of (Euclidean) isometries of a Euclidean space ; that is, the transformations of that space that preserve the Euclidean distance between any two points (also called Euclidean transformations). The group depends only on the dimension n of the space, and is commonly denoted E(n) or ISO(n). The Euclidean group E(n) comprises all translations, rotations, and reflections of ; and arbitrary finite combinations of them. The Euclidean group can be seen as the symmetry group of the space itself, and contains the group of symmetries of any figure (subset) of that space. A Euclidean isometry can be direct or indirect, depending on whether it preserves the handedness of figures. The direct Euclidean isometries form a subgroup, the special Euclidean group, often denoted SE(n), whose elements are called rigid motions or Euclidean motions. They comprise arbitrary combinations of translations and rotations, but not reflections. These groups are among the oldest and most studied, at least in the cases of dimension 2 and 3 – implicitly, long before the concept of group was invented. (Wikipedia).

Video thumbnail

Group Theory: The Center of a Group G is a Subgroup of G Proof

Please Subscribe here, thank you!!! https://goo.gl/JQ8Nys Group Theory: The Center of a Group G is a Subgroup of G Proof

From playlist Abstract Algebra

Video thumbnail

Symmetric Groups (Abstract Algebra)

Symmetric groups are some of the most essential types of finite groups. A symmetric group is the group of permutations on a set. The group of permutations on a set of n-elements is denoted S_n. Symmetric groups capture the history of abstract algebra, provide a wide range of examples in

From playlist Abstract Algebra

Video thumbnail

The Special Linear Group is a Subgroup of the General Linear Group Proof

The Special Linear Group is a Subgroup of the General Linear Group Proof

From playlist Abstract Algebra

Video thumbnail

GT2. Definition of Subgroup

Abstract Algebra: We define the notion of a subgroup and provide various examples. We also consider cyclic subgroups and subgroups generated by subsets in a given group G. Example include A4 and D8. U.Reddit course materials available at http://ureddit.com/class/23794/intro-to-group-

From playlist Abstract Algebra

Video thumbnail

Abstract Algebra | Cyclic Subgroups

We define the notion of a cyclic subgroup and give a few examples. http://www.michael-penn.net http://www.randolphcollege.edu/mathematics/

From playlist Abstract Algebra

Video thumbnail

What is a Group? | Abstract Algebra

Welcome to group theory! In today's lesson we'll be going over the definition of a group. We'll see the four group axioms in action with some examples, and some non-examples as well which violate the axioms and are thus not groups. In a fundamental way, groups are structures built from s

From playlist Abstract Algebra

Video thumbnail

Group Definition (expanded) - Abstract Algebra

The group is the most fundamental object you will study in abstract algebra. Groups generalize a wide variety of mathematical sets: the integers, symmetries of shapes, modular arithmetic, NxM matrices, and much more. After learning about groups in detail, you will then be ready to contin

From playlist Abstract Algebra

Video thumbnail

Definition of a group Lesson 24

In this video we take our first look at the definition of a group. It is basically a set of elements and the operation defined on them. If this set of elements and the operation defined on them obey the properties of closure and associativity, and if one of the elements is the identity el

From playlist Abstract algebra

Video thumbnail

Quotient group example

Now that we know what a quotient group is, let's take a look at an example to cement our understanding of the concepts involved.

From playlist Abstract algebra

Video thumbnail

Examples of non-positively curved groups II - Kim Ruane

Women and Mathematics Title: Examples of non-positively curved groups II Speaker: Kim Ruane Affiliation: Tufts University Date: May 24, 2017 For more videos, please visit http://video.ias.edu

From playlist Mathematics

Video thumbnail

Colloquium MathAlp 2019 - Claude Lebrun

Claude Lebrun - Mass, Scalar Curvature, Kähler Geometry, and All That Given a complete Riemannian manifold that looks enough like Euclidean space at infinity, physicists have defined a quantity called the “mass” that measures the asymptotic deviation of the geometry from the Euclidean mod

From playlist Colloquiums MathAlp

Video thumbnail

Dynamics on character varieties - William Goldman

Character Varieties, Dynamics and Arithmetic Topic: Dynamics on character varieties Speaker: William Goldman Affiliation: University of Maryland; Member, School of Mathematics Date: November 10, 2021 In these two talks, I will describe how the classification of locally homogeneous geomet

From playlist Mathematics

Video thumbnail

Intrinsic Diophantine approximation (Lecture 1) by Amos Nevo

PROGRAM SMOOTH AND HOMOGENEOUS DYNAMICS ORGANIZERS: Anish Ghosh, Stefano Luzzatto and Marcelo Viana DATE: 23 September 2019 to 04 October 2019 VENUE: Ramanujan Lecture Hall, ICTS Bangalore Ergodic theory has its origins in the the work of L. Boltzmann on the kinetic theory of gases.

From playlist Smooth And Homogeneous Dynamics

Video thumbnail

Week 7 - Symmetry and Equivariance in Neural Networks - Tess Smidt

More about this lecture: https://dl4sci-school.lbl.gov/tess-smidt Deep Learning for Science School: https://dl4sci-school.lbl.gov/agenda

From playlist ML & Deep Learning

Video thumbnail

Visual Group Theory: Lecture 7.5: Euclidean domains and algebraic integers

Visual Group Theory: Lecture 7.5: Euclidean domains and algebraic integers. Around 300 BC, the Greek mathematician Euclid found an algorithm to compute the greatest common divisor (gcd) of two numbers. Loosely speaking, a Euclidean domain is a commutative ring for which this algorihm stil

From playlist Visual Group Theory

Video thumbnail

John Milnor: Spheres

This lecture was held by Abel Laureate John Milnor at The University of Oslo, May 25, 2011 and was part of the Abel Prize Lectures in connection with the Abel Prize Week celebrations. Program for the Abel Lectures 2011 1. "Spheres" by Abel Laureate John Milnor, Institute for Mathematical

From playlist Abel Lectures

Video thumbnail

Prerequisites III: Manifolds & Fiber Bundles - Maurice Weiler

Video recording of the First Italian Summer School on Geometric Deep Learning, which took place in July 2022 in Pescara. Slides: https://www.sci.unich.it/geodeep2022/slides/Manifolds_and_Fiber_Bundles.pdf

From playlist First Italian School on Geometric Deep Learning - Pescara 2022

Video thumbnail

Abstract Algebra | The notion of a subgroup.

We present the definition of a subgroup and give some examples. http://www.michael-penn.net http://www.randolphcollege.edu/mathematics/

From playlist Abstract Algebra

Related pages

Poincaré group | Affine group | Lie group | Translation (geometry) | Euclidean geometry | Translational symmetry | Plane of rotation | Lattice (group) | Topology | Angle | Chirality (mathematics) | Glide reflection | Distance | Degrees of freedom (physics and chemistry) | Affine geometry | Origin (mathematics) | Topological group | Index of a subgroup | Group (mathematics) | Improper rotation | Space group | Glide plane | Quotient group | Finite group | Rotation | Rotational symmetry | Rigid body | Symmetry group | Dihedral group | Mathematics | Chasles' theorem (kinematics) | Affine transformation | Felix Klein | Semidirect product | Square matrix | Isometry | William Thurston | Euclidean space | Helix | Conjugacy class | Involution (mathematics) | Normal subgroup | Euclidean plane isometry | Calculus | Orthogonal matrix | Subgroup | Orthogonal group | Fixed points of isometry groups in Euclidean space | Euclidean distance | Function composition | Coset | Reflection (mathematics) | Discrete space | Rotation (mathematics)