# Abelian 2-group

In mathematics, an Abelian 2-group is a higher dimensional analogue of an Abelian group, in the sense of higher algebra, which were originally introduced by Alexander Grothendieck while studying abstract structures surrounding Abelian varieties and Picard groups. More concretely, they are given by groupoids which have a bifunctor which acts formally like the addition an Abelian group. Namely, the bifunctor has a notion of commutativity, associativity, and an identity structure. Although this seems like a rather lofty and abstract structure, there are several (very concrete) examples of Abelian 2-groups. In fact, some of which provide prototypes for more complex examples of higher algebraic structures, such as Abelian n-groups. (Wikipedia).

Every Group of Order Five or Smaller is Abelian Proof

Please Subscribe here, thank you!!! https://goo.gl/JQ8Nys Every Group of Order Five or Smaller is Abelian Proof. In this video we prove that if G is a group whose order is five or smaller, then G must be abelian.

From playlist Abstract Algebra

Group theory 31: Free groups

This lecture is part of an online math course on group theory. We review free abelian groups, then construct free (non-abelian) groups, and show that they are given by the set of reduced words, and as a bonus find that they are residually finite.

From playlist Group theory

Groups and subgroups

Jacob explains the fundamental concepts in group theory of what groups and subgroups are, and highlights a few examples of groups you may already know. Abelian groups are named in honor of Niels Henrik Abel (https://en.wikipedia.org/wiki/Niels_Henrik_Abel), who pioneered the subject of

From playlist Basics: Group Theory

Group theory 17: Finite abelian groups

This lecture is part of a mathematics course on group theory. It shows that every finitely generated abelian group is a sum of cyclic groups. Correction: At 9:22 the generators should be g, h+ng not g, g+nh

From playlist Group theory

Representation theory: Abelian groups

This lecture discusses the complex representations of finite abelian groups. We show that any group is iomorphic to its dual (the group of 1-dimensional representations, and isomorphic to its double dual in a canonical way (Pontryagin duality). We check the orthogonality relations for the

From playlist Representation theory

Every Subgroup of an Abelian Group is Normal Proof

Please Subscribe here, thank you!!! https://goo.gl/JQ8Nys Every Subgroup of an Abelian Group is Normal Proof

From playlist Abstract Algebra

Abstract Algebra - 11.1 Fundamental Theorem of Finite Abelian Groups

We complete our study of Abstract Algebra in the topic of groups by studying the Fundamental Theorem of Finite Abelian Groups. This tells us that every finite abelian group is a direct product of cyclic groups of prime-power order. Video Chapters: Intro 0:00 Before the Fundamental Theorem

From playlist Abstract Algebra - Entire Course

Visual Group Theory, Lecture 4.4: Finitely generated abelian groups

Visual Group Theory, Lecture 4.4: Finitely generated abelian groups We begin this lecture by proving that the cyclic group of order n*m is isomorphic to the direct product of cyclic groups of order n and m if and only if gcd(n,m)=1. Then, we classify all finite abelian groups by decomposi

From playlist Visual Group Theory

Normal subgroups

Before we carry on with our coset journey, we need to discover when the left- and right cosets are equal to each other. The obvious situation is when our group is Abelian. The other situation is when the subgroup is a normal subgroup. In this video I show you what a normal subgroup is a

From playlist Abstract algebra

Francesc Fité, Sato-Tate groups of abelian varieties of dimension up to 3

VaNTAGe seminar on April 7, 2020 License: CC-BY-NC-SA Closed captions provided by Jun Bo Lau.

From playlist The Sato-Tate conjecture for abelian varieties

Visual Group Theory, Lecture 4.5: The isomorphism theorems

Visual Group Theory, Lecture 4.5: The isomorphism theorems There are four central results in group theory that are collectively known at the isomorphism theorems. We introduced the first of these a few lectures back, under the name of the "fundamental homomorphism theorem." In this lectur

From playlist Visual Group Theory

Andrew Wiles: Fermat's Last theorem: abelian and non-abelian approaches

The successful approach to solving Fermat's problem reflects a move in number theory from abelian to non-abelian arithmetic. This lecture was held by Abel Laurate Sir Andrew Wiles at The University of Oslo, May 25, 2016 and was part of the Abel Prize Lectures in connection with the Abel P

From playlist Sir Andrew J. Wiles

Visual Group Theory, Lecture 2.1: Cyclic and abelian groups

Visual Group Theory, Lecture 2.1: Cyclic and abelian groups In this lecture, we introduce two important families of groups: (1) "cyclic groups", which are those that can be generated by a single element, and (2) "abelian groups", which are those for which multiplication commutes. Addition

From playlist Visual Group Theory

Direct Products of Groups (Abstract Algebra)

The direct product is a way to combine two groups into a new, larger group. Just as you can factor integers into prime numbers, you can break apart some groups into a direct product of simpler groups. Be sure to subscribe so you don't miss new lessons from Socratica: http://bit.ly/1ixuu

From playlist Abstract Algebra

Polynomial groups, polynomial maps, dimension subgroups and related problems by L. R. Vermani

PROGRAM GROUP ALGEBRAS, REPRESENTATIONS AND COMPUTATION ORGANIZERS: Gurmeet Kaur Bakshi, Manoj Kumar and Pooja Singla DATE: 14 October 2019 to 23 October 2019 VENUE: Ramanujan Lecture Hall, ICTS Bangalore Determining explicit algebraic structures of semisimple group algebras is a fund

From playlist Group Algebras, Representations And Computation

The Set of all Elements of Order 2 with the Identity is a Subgroup of an Abelian Group Proof

The Set of all Elements of Order 2 with the Identity is a Subgroup of an Abelian Group Proof

From playlist Abstract Algebra

Rachel Pries - The geometry of p-torsion stratifications of the moduli space of curve

The geometry of p-torsion stratifications of the moduli space of curve

From playlist 28ème Journées Arithmétiques 2013