UsefulLinks
Mathematics
Algebraic Geometry
1. Foundations of Algebraic Geometry
2. Polynomial Rings and Commutative Algebra
3. Gröbner Bases
4. Affine Algebraic Geometry
5. Projective Algebraic Geometry
6. Rational Maps and Birational Geometry
7. Local Properties and Singularities
8. Introduction to Schemes
9. Coherent Sheaves and Cohomology
10. Divisors and Line Bundles
11. Algebraic Curves
12. Algebraic Surfaces
13. Advanced Topics
2.
Polynomial Rings and Commutative Algebra
2.1.
Polynomial Rings
2.1.1.
Definition and Basic Properties
2.1.2.
Universal Property of Polynomial Rings
2.1.3.
Properties of k[x₁, ..., xₙ]
2.1.3.1.
Structure as a Commutative Ring
2.1.3.2.
Graded Structure
2.1.3.3.
Degree Functions
2.1.4.
Monomials and Term Orderings
2.1.4.1.
Monomial Orderings
2.1.4.2.
Lexicographic Order
2.1.4.3.
Graded Lexicographic Order
2.1.4.4.
Degree Reverse Lexicographic Order
2.1.5.
Division Algorithm for Polynomials
2.1.5.1.
Multivariate Division
2.1.5.2.
Remainder and Quotient
2.2.
Ideals in Polynomial Rings
2.2.1.
Definition and Examples
2.2.2.
Operations on Ideals
2.2.2.1.
Sum and Product
2.2.2.2.
Intersection
2.2.2.3.
Quotient of Ideals
2.2.3.
Generators and Bases
2.2.4.
Principal Ideals
2.2.5.
Quotient Rings
2.2.5.1.
Construction
2.2.5.2.
Universal Property
2.3.
Prime and Maximal Ideals
2.3.1.
Definitions and Characterizations
2.3.2.
Examples in Polynomial Rings
2.3.3.
Existence Theorems
2.3.3.1.
Zorn's Lemma Applications
2.3.4.
Properties of Prime Ideals
2.3.5.
Correspondence with Points
2.3.6.
Localization at Prime Ideals
2.4.
Noetherian Rings
2.4.1.
Ascending Chain Condition
2.4.2.
Equivalent Characterizations
2.4.3.
Finiteness Properties
2.4.4.
Examples and Non-examples
2.5.
Hilbert's Basis Theorem
2.5.1.
Statement and Proof
2.5.2.
Consequences for Polynomial Rings
2.5.3.
Applications to Algebraic Geometry
2.6.
Modules over Rings
2.6.1.
Definition and Basic Properties
2.6.2.
Examples of Modules
2.6.3.
Submodules and Quotient Modules
2.6.4.
Homomorphisms of Modules
2.6.5.
Finitely Generated Modules
2.6.6.
Free Modules
2.6.7.
Exact Sequences
2.7.
Localization
2.7.1.
Multiplicative Sets
2.7.2.
Construction of Localizations
2.7.3.
Universal Property
2.7.4.
Local Properties
2.7.5.
Local Rings
2.7.5.1.
Definition and Examples
2.7.5.2.
Maximal Ideal
2.7.5.3.
Local Homomorphisms
2.8.
Tensor Products
2.8.1.
Definition and Universal Property
2.8.2.
Construction and Examples
2.8.3.
Properties of Tensor Products
2.8.4.
Flatness
2.8.4.1.
Characterizations
Previous
1. Foundations of Algebraic Geometry
Go to top
Next
3. Gröbner Bases