- Discrete geometry
- >
- Tessellation
- >
- Tilings by order
- >
- Infinite-order tilings

- Euclidean plane geometry
- >
- Tessellation
- >
- Tilings by order
- >
- Infinite-order tilings

- Mathematics and art
- >
- Tessellation
- >
- Tilings by order
- >
- Infinite-order tilings

- Polyhedra
- >
- Tessellation
- >
- Tilings by order
- >
- Infinite-order tilings

- Polytopes
- >
- Tessellation
- >
- Tilings by order
- >
- Infinite-order tilings

- Symmetry
- >
- Tessellation
- >
- Tilings by order
- >
- Infinite-order tilings

Infinite-order square tiling

In geometry, the infinite-order square tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {4,∞}. All vertices are ideal, located at "infinity", seen on the boundary of the P

Order-4-5 pentagonal honeycomb

In the geometry of hyperbolic 3-space, the order-4-5 pentagonal honeycomb a regular space-filling tessellation (or honeycomb) with Schläfli symbol {5,4,5}.

Order-7 cubic honeycomb

In the geometry of hyperbolic 3-space, the order-7 cubic honeycomb is a regular space-filling tessellation (or honeycomb). With Schläfli symbol {4,3,7}, it has seven cubes {4,3} around each edge. All

Order-5-4 square honeycomb

In the geometry of hyperbolic 3-space, the order-5-4 square honeycomb (or 4,5,4 honeycomb) a regular space-filling tessellation (or honeycomb) with Schläfli symbol {4,5,4}.

Infinite-order digonal tiling

No description available.

Infinite-order apeirogonal tiling

In geometry, the infinite-order apeirogonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {∞,∞}, which means it has countably infinitely many apeirogons around all its

Apeirogonal hosohedron

In geometry, an apeirogonal hosohedron or infinite hosohedron is a tiling of the plane consisting of two vertices at infinity. It may be considered an improper regular tiling of the Euclidean plane, w

Order-3-7 hexagonal honeycomb

In the geometry of hyperbolic 3-space, the order-3-7 hexagonal honeycomb or (6,3,7 honeycomb) a regular space-filling tessellation (or honeycomb) with Schläfli symbol {6,3,7}.

Order-6-4 square honeycomb

In the geometry of hyperbolic 3-space, the order-6-4 square honeycomb (or 4,6,4 honeycomb) a regular space-filling tessellation (or honeycomb) with Schläfli symbol {4,6,4}.

Snub apeiroapeirogonal tiling

In geometry, the snub apeiroapeirogonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of s{∞,∞}. It has 3 equilateral triangles and 2 apeirogons around every vertex, with

Snub tetraapeirogonal tiling

In geometry, the snub tetraapeirogonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of sr{∞,4}.

Order-3-7 heptagonal honeycomb

In the geometry of hyperbolic 3-space, the order-3-7 heptagonal honeycomb a regular space-filling tessellation (or honeycomb) with Schläfli symbol {7,3,7}.

Infinite-order hexagonal tiling

In 2-dimensional hyperbolic geometry, the infinite-order hexagonal tiling is a regular tiling. It has Schläfli symbol of {6,∞}. All vertices are ideal, located at "infinity", seen on the boundary of t

Infinite-order pentagonal tiling

In 2-dimensional hyperbolic geometry, the infinite-order pentagonal tiling is a regular tiling. It has Schläfli symbol of {5,∞}. All vertices are ideal, located at "infinity", seen on the boundary of

Truncated infinite-order triangular tiling

In geometry, the truncated infinite-order triangular tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of t{3,∞}.

Order-7 dodecahedral honeycomb

In the geometry of hyperbolic 3-space, the order-7 dodecahedral honeycomb a regular space-filling tessellation (or honeycomb).

Truncated infinite-order square tiling

In geometry, the truncated infinite-order square tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t{4,∞}.

Infinite-order triangular tiling

In geometry, the infinite-order triangular tiling is a regular tiling of the hyperbolic plane with a Schläfli symbol of {3,∞}. All vertices are ideal, located at "infinity" and seen on the boundary of

© 2023 Useful Links.