# Category: Infinite-order tilings

Infinite-order square tiling
In geometry, the infinite-order square tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {4,∞}. All vertices are ideal, located at "infinity", seen on the boundary of the P
Order-4-5 pentagonal honeycomb
In the geometry of hyperbolic 3-space, the order-4-5 pentagonal honeycomb a regular space-filling tessellation (or honeycomb) with Schläfli symbol {5,4,5}.
Order-7 cubic honeycomb
In the geometry of hyperbolic 3-space, the order-7 cubic honeycomb is a regular space-filling tessellation (or honeycomb). With Schläfli symbol {4,3,7}, it has seven cubes {4,3} around each edge. All
Order-5-4 square honeycomb
In the geometry of hyperbolic 3-space, the order-5-4 square honeycomb (or 4,5,4 honeycomb) a regular space-filling tessellation (or honeycomb) with Schläfli symbol {4,5,4}.
Infinite-order digonal tiling
No description available.
Infinite-order apeirogonal tiling
In geometry, the infinite-order apeirogonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {∞,∞}, which means it has countably infinitely many apeirogons around all its
Apeirogonal hosohedron
In geometry, an apeirogonal hosohedron or infinite hosohedron is a tiling of the plane consisting of two vertices at infinity. It may be considered an improper regular tiling of the Euclidean plane, w
Order-3-7 hexagonal honeycomb
In the geometry of hyperbolic 3-space, the order-3-7 hexagonal honeycomb or (6,3,7 honeycomb) a regular space-filling tessellation (or honeycomb) with Schläfli symbol {6,3,7}.
Order-6-4 square honeycomb
In the geometry of hyperbolic 3-space, the order-6-4 square honeycomb (or 4,6,4 honeycomb) a regular space-filling tessellation (or honeycomb) with Schläfli symbol {4,6,4}.
Snub apeiroapeirogonal tiling
In geometry, the snub apeiroapeirogonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of s{∞,∞}. It has 3 equilateral triangles and 2 apeirogons around every vertex, with
Snub tetraapeirogonal tiling
In geometry, the snub tetraapeirogonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of sr{∞,4}.
Order-3-7 heptagonal honeycomb
In the geometry of hyperbolic 3-space, the order-3-7 heptagonal honeycomb a regular space-filling tessellation (or honeycomb) with Schläfli symbol {7,3,7}.
Infinite-order hexagonal tiling
In 2-dimensional hyperbolic geometry, the infinite-order hexagonal tiling is a regular tiling. It has Schläfli symbol of {6,∞}. All vertices are ideal, located at "infinity", seen on the boundary of t
Infinite-order pentagonal tiling
In 2-dimensional hyperbolic geometry, the infinite-order pentagonal tiling is a regular tiling. It has Schläfli symbol of {5,∞}. All vertices are ideal, located at "infinity", seen on the boundary of
Truncated infinite-order triangular tiling
In geometry, the truncated infinite-order triangular tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of t{3,∞}.
Order-7 dodecahedral honeycomb
In the geometry of hyperbolic 3-space, the order-7 dodecahedral honeycomb a regular space-filling tessellation (or honeycomb).
Truncated infinite-order square tiling
In geometry, the truncated infinite-order square tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t{4,∞}.
Infinite-order triangular tiling
In geometry, the infinite-order triangular tiling is a regular tiling of the hyperbolic plane with a Schläfli symbol of {3,∞}. All vertices are ideal, located at "infinity" and seen on the boundary of