- Applied mathematics
- >
- Applied probability
- >
- Gambling mathematics
- >
- Contract bridge probabilities

- Applied probability
- >
- Applications of randomness
- >
- Gambling mathematics
- >
- Contract bridge probabilities

- Fields of mathematics
- >
- Game theory
- >
- Gambling mathematics
- >
- Contract bridge probabilities

- Mathematical economics
- >
- Game theory
- >
- Gambling mathematics
- >
- Contract bridge probabilities

- Probability
- >
- Applied probability
- >
- Gambling mathematics
- >
- Contract bridge probabilities

- Randomness
- >
- Applications of randomness
- >
- Gambling mathematics
- >
- Contract bridge probabilities

Vacant Places

In the card game bridge, the law or principle of vacant places is a simple method for estimating the probable location of any particular card in the four hands. It can be used both to aid in a decisio

Contract bridge probabilities

In the game of bridge mathematical probabilities play a significant role. Different declarer play strategies lead to success depending on the distribution of opponent's cards. To decide which strategy

Principle of restricted choice

In contract bridge, the principle of restricted choice states that play of a particular card decreases the probability its player holds any equivalent card. For example, South leads a low spade, West

Percentage play

Percentage play in contract bridge is a play influenced by mathematical factors when more than one reasonable line of play is available. It is a generic name for plays in which declarer maximizes the

Safety play

Safety play in contract bridge is a generic name for plays in which declarer maximizes the chances for fulfilling the contract (or achieving a certain score) by ignoring a chance for a higher score. D

Suit combination

In the card game contract bridge, a suit combination is a specific subset of the cards of one suit held respectively in declarer's and dummy's hands at the onset of play. While the ranks of the remain

© 2023 Useful Links.