- Discrete geometry
- >
- Tessellation
- >
- Tilings by face
- >
- Apeirogonal tilings

- Euclidean plane geometry
- >
- Tessellation
- >
- Tilings by face
- >
- Apeirogonal tilings

- Mathematics and art
- >
- Tessellation
- >
- Tilings by face
- >
- Apeirogonal tilings

- Polyhedra
- >
- Tessellation
- >
- Tilings by face
- >
- Apeirogonal tilings

- Polytopes
- >
- Tessellation
- >
- Tilings by face
- >
- Apeirogonal tilings

- Symmetry
- >
- Tessellation
- >
- Tilings by face
- >
- Apeirogonal tilings

Triapeirogonal tiling

In geometry, the triapeirogonal tiling (or trigonal-horocyclic tiling) is a uniform tiling of the hyperbolic plane with a Schläfli symbol of r{∞,3}.

Snub triapeirogonal tiling

In geometry, the snub triapeirogonal tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of sr{∞,3}.

Truncated order-4 apeirogonal tiling

In geometry, the truncated order-4 apeirogonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t{∞,4}.

Order-3 apeirogonal tiling

In geometry, the order-3 apeirogonal tiling is a regular tiling of the hyperbolic plane. It is represented by the Schläfli symbol {∞,3}, having three regular apeirogons around each vertex. Each apeiro

Apeirogonal hosohedron

In geometry, an apeirogonal hosohedron or infinite hosohedron is a tiling of the plane consisting of two vertices at infinity. It may be considered an improper regular tiling of the Euclidean plane, w

Truncated order-3 apeirogonal tiling

In geometry, the truncated order-3 apeirogonal tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of t{∞,3}.

Rhombitriapeirogonal tiling

In geometry, the rhombtriapeirogonal tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of rr{∞,3}.

Truncated tetraapeirogonal tiling

In geometry, the truncated tetraapeirogonal tiling is a semiregular tiling of the hyperbolic plane. There are one square, one octagon, and one apeirogon on each vertex. It has Schläfli symbol of tr{∞,

Order-4 apeirogonal tiling

In geometry, the order-4 apeirogonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {∞,4}.

Pentaapeirogonal tiling

In geometry, the pentaapeirogonal tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of r{∞,5}.

Truncated triapeirogonal tiling

In geometry, the truncated triapeirogonal tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of tr{∞,3}.

Apeirogonal prism

In geometry, an apeirogonal prism or infinite prism is the arithmetic limit of the family of prisms; it can be considered an infinite polyhedron or a tiling of the plane. Thorold Gosset called it a 2-

Infinite-order apeirogonal tiling

In geometry, the infinite-order apeirogonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {∞,∞}, which means it has countably infinitely many apeirogons around all its

Order-5 apeirogonal tiling

In geometry, the order-5 apeirogonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {∞,5}.

Apeirogonal antiprism

In geometry, an apeirogonal antiprism or infinite antiprism is the arithmetic limit of the family of antiprisms; it can be considered an infinite polyhedron or a tiling of the plane. If the sides are

Tetraapeirogonal tiling

In geometry, the tetraapeirogonal tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of r{∞,4}.

Order-2 apeirogonal tiling

In geometry, an order-2 apeirogonal tiling, apeirogonal dihedron, or infinite dihedron is a tiling of the plane consisting of two apeirogons. It may be considered an improper regular tiling of the Euc

Order-6 apeirogonal tiling

In geometry, the order-6 apeirogonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {∞,6}.

Apeirogonal tiling

In geometry, an apeirogonal tiling is a tessellation of the Euclidean plane, hyperbolic plane, or some other two-dimensional space by apeirogons. Tilings of this type include:
* Order-2 apeirogonal t

© 2023 Useful Links.