Articles containing proofs | Fibonacci numbers | Theorems in number theory

Zeckendorf's theorem

In mathematics, Zeckendorf's theorem, named after Belgian amateur mathematician Edouard Zeckendorf, is a theorem about the representation of integers as sums of Fibonacci numbers. Zeckendorf's theorem states that every positive integer can be represented uniquely as the sum of one or more distinct Fibonacci numbers in such a way that the sum does not include any two consecutive Fibonacci numbers. More precisely, if N is any positive integer, there exist positive integers ci ≥ 2, with ci + 1 > ci + 1, such that where Fn is the nth Fibonacci number. Such a sum is called the Zeckendorf representation of N. The Fibonacci coding of N can be derived from its Zeckendorf representation. For example, the Zeckendorf representation of 64 is 64 = 55 + 8 + 1. There are other ways of representing 64 as the sum of Fibonacci numbers 64 = 55 + 5 + 3 + 164 = 34 + 21 + 8 + 164 = 34 + 21 + 5 + 3 + 164 = 34 + 13 + 8 + 5 + 3 + 1 but these are not Zeckendorf representations because 34 and 21 are consecutive Fibonacci numbers, as are 5 and 3. For any given positive integer, its Zeckendorf representation can be found by using a greedy algorithm, choosing the largest possible Fibonacci number at each stage. (Wikipedia).

Zeckendorf's theorem
Video thumbnail

Weil conjectures 1 Introduction

This talk is the first of a series of talks on the Weil conejctures. We recall properties of the Riemann zeta function, and describe how Artin used these to motivate the definition of the zeta function of a curve over a finite field. We then describe Weil's generalization of this to varie

From playlist Algebraic geometry: extra topics

Video thumbnail

Euler's Formula for the Quaternions

In this video, we will derive Euler's formula using a quaternion power, instead of a complex power, which will allow us to calculate quaternion exponentials such as e^(i+j+k). If you like quaternions, this is a pretty neat formula and a simple generalization of Euler's formula for complex

From playlist Math

Video thumbnail

Little Fibs (extra footage) - Numberphile

MAIN VIDEO: https://youtu.be/4izjrtR8Ozg Lucas Numbers: https://youtu.be/PeUbRXnbmms Featuring 'Mathemagician' Colm Mulcahy, Professor of Mathematics at Spelman College. Colm: http://cardcolm.org More cards and suffering videos: http://bit.ly/Cards_Shuffling NUMBERPHILE Website: http://ww

From playlist Cards and Shuffling on Numberphile

Video thumbnail

Irreducibility and the Schoenemann-Eisenstein criterion | Famous Math Probs 20b | N J Wildberger

In the context of defining and computing the cyclotomic polynumbers (or polynomials), we consider irreducibility. Gauss's lemma connects irreducibility over the integers to irreducibility over the rational numbers. Then we describe T. Schoenemann's irreducibility criterion, which uses some

From playlist Famous Math Problems

Video thumbnail

Dimitri Zvonkine - On two ELSV formulas

The ELSV formula (discovered by Ekedahl, Lando, Shapiro and Vainshtein) is an equality between two numbers. The first one is a Hurwitz number that can be defined as the number of factorizations of a given permutation into transpositions. The second is the integral of a characteristic class

From playlist 4th Itzykson Colloquium - Moduli Spaces and Quantum Curves

Video thumbnail

Zermelo Fraenkel Introduction

This lecture is part of an online course on the Zermelo Fraenkel axioms of set theory. This lecture gives an overview of the axioms, describes the von Neumann hierarchy, and sketches several approaches to interpreting the axioms (Platonism, von Neumann hierarchy, multiverse, formalism, pra

From playlist Zermelo Fraenkel axioms

Video thumbnail

Weil conjectures 4 Fermat hypersurfaces

This talk is part of a series on the Weil conjectures. We give a summary of Weil's paper where he introduced the Weil conjectures by calculating the zeta function of a Fermat hypersurface. We give an overview of how Weil expressed the number of points of a variety in terms of Gauss sums. T

From playlist Algebraic geometry: extra topics

Video thumbnail

Zermelo Fraenkel Separation and replacement

This is part of a series of lectures on the Zermelo-Fraenkel axioms for set theory. We discuss the axioms of separation and replacement and some of their variations. For the other lectures in the course see https://www.youtube.com/playlist?list=PL8yHsr3EFj52EKVgPi-p50fRP2_SbG2oi

From playlist Zermelo Fraenkel axioms

Video thumbnail

Live CEOing Ep 254: Reviewing Entries in the Wolfram Function Repository

Watch Stephen Wolfram and teams of developers in a live, working, language design meeting. This episode is about Reviewing Entries in the Wolfram Function Repository.

From playlist Behind the Scenes in Real-Life Software Design

Video thumbnail

How to Determine if Functions are Linearly Independent or Dependent using the Definition

How to Determine if Functions are Linearly Independent or Dependent using the Definition If you enjoyed this video please consider liking, sharing, and subscribing. You can also help support my channel by becoming a member https://www.youtube.com/channel/UCr7lmzIk63PZnBw3bezl-Mg/join Th

From playlist Zill DE 4.1 Preliminary Theory - Linear Equations

Video thumbnail

Zermelo Fraenkel Powerset

This is part of a series of lectures on the Zermelo-Fraenkel axioms for set theory. We discuss the powerset axiom, the strongest of the ZF axioms, and explain why the notion of a powerset is so hard to pin down precisely. For the other lectures in the course see https://www.youtube.com

From playlist Zermelo Fraenkel axioms

Video thumbnail

Calculus 1 (Stewart) Ep 22, Mean Value Theorem (Oct 28, 2021)

This is a recording of a live class for Math 1171, Calculus 1, an undergraduate course for math majors (and others) at Fairfield University, Fall 2021. The textbook is Stewart. PDF of the written notes, and a list of all episodes is at the class website. Class website: http://cstaecker.f

From playlist Math 1171 (Calculus 1) Fall 2021

Video thumbnail

Equidistribution of Unipotent Random Walks on Homogeneous spaces by Emmanuel Breuillard

PROGRAM : ERGODIC THEORY AND DYNAMICAL SYSTEMS (HYBRID) ORGANIZERS : C. S. Aravinda (TIFR-CAM, Bengaluru), Anish Ghosh (TIFR, Mumbai) and Riddhi Shah (JNU, New Delhi) DATE : 05 December 2022 to 16 December 2022 VENUE : Ramanujan Lecture Hall and Online The programme will have an emphasis

From playlist Ergodic Theory and Dynamical Systems 2022

Video thumbnail

What is Green's theorem? Chris Tisdell UNSW

This lecture discusses Green's theorem in the plane. Green's theorem not only gives a relationship between double integrals and line integrals, but it also gives a relationship between "curl" and "circulation". In addition, Gauss' divergence theorem in the plane is also discussed, whic

From playlist Vector Calculus @ UNSW Sydney. Dr Chris Tisdell

Video thumbnail

Real Analysis Ep 32: The Mean Value Theorem

Episode 32 of my videos for my undergraduate Real Analysis course at Fairfield University. This is a recording of a live class. This episode is more about the mean value theorem and related ideas. Class webpage: http://cstaecker.fairfield.edu/~cstaecker/courses/2020f3371/ Chris Staecker

From playlist Math 3371 (Real analysis) Fall 2020

Video thumbnail

Pythagorean theorem - What is it?

► My Geometry course: https://www.kristakingmath.com/geometry-course Pythagorean theorem is super important in math. You will probably learn about it for the first time in Algebra, but you will literally use it in Algebra, Geometry, Trigonometry, Precalculus, Calculus, and beyond! That’s

From playlist Geometry

Video thumbnail

Wolfram Physics Project: Working Session Sept. 15, 2020 [Physicalization of Metamathematics]

This is a Wolfram Physics Project working session on metamathematics and its physicalization in the Wolfram Model. Begins at 10:15 Originally livestreamed at: https://twitch.tv/stephen_wolfram Stay up-to-date on this project by visiting our website: http://wolfr.am/physics Check out the

From playlist Wolfram Physics Project Livestream Archive

Video thumbnail

Johnathan Bush (7/8/2020): Borsuk–Ulam theorems for maps into higher-dimensional codomains

Title: Borsuk–Ulam theorems for maps into higher-dimensional codomains Abstract: I will describe Borsuk-Ulam theorems for maps of spheres into higher-dimensional codomains. Given a continuous map from a sphere to Euclidean space, we say the map is odd if it respects the standard antipodal

From playlist AATRN 2020

Video thumbnail

Worldwide Calculus: Extrema and the Mean Value Theorem

Lecture on 'Extrema and the Mean Value Theorem' from 'Worldwide Differential Calculus' and 'Worldwide AP Calculus'. For more lecture videos and $10 digital textbooks, visit www.centerofmath.org.

From playlist Worldwide Single-Variable Calculus for AP®

Video thumbnail

What's so wrong with the Axiom of Choice ?

One of the Zermelo- Fraenkel axioms, called axiom of choice, is remarkably controversial. It links to linear algebra and several paradoxes- find out what is so strange about it ! (00:22) - Math objects as sets (00:54) - What axioms we use ? (01:30) - Understanding axiom of choice (03:2

From playlist Something you did not know...

Related pages

Fibonacci number | Complete sequence | Empty sum | If and only if | Without loss of generality | Mathematics | Fibonacci coding | Integer | Ostrowski numeration | Theorem | Mathematical induction | Uniqueness quantification | Greedy algorithm | Proof by contradiction | Fibonacci nim