Nonstandard analysis | Systems of set theory

Internal set theory

Internal set theory (IST) is a mathematical theory of sets developed by Edward Nelson that provides an axiomatic basis for a portion of the nonstandard analysis introduced by Abraham Robinson. Instead of adding new elements to the real numbers, Nelson's approach modifies the axiomatic foundations through syntactic enrichment. Thus, the axioms introduce a new term, "standard", which can be used to make discriminations not possible under the conventional ZFC axioms for sets. Thus, IST is an enrichment of ZFC: all axioms of ZFC are satisfied for all classical predicates, while the new unary predicate "standard" satisfies three additional axioms I, S, and T. In particular, suitable nonstandard elements within the set of real numbers can be shown to have properties that correspond to the properties of infinitesimal and unlimited elements. Nelson's formulation is made more accessible for the lay-mathematician by leaving out many of the complexities of meta-mathematical logic that were initially required to justify rigorously the consistency of number systems containing infinitesimal elements. (Wikipedia).

Video thumbnail

Set Theory (Part 2): ZFC Axioms

Please feel free to leave comments/questions on the video and practice problems below! In this video, I introduce some common axioms in set theory using the Zermelo-Fraenkel w/ choice (ZFC) system. Five out of nine ZFC axioms are covered and the remaining four will be introduced in their

From playlist Set Theory by Mathoma

Video thumbnail

Introduction to sets || Set theory Overview - Part 2

A set is the mathematical model for a collection of different things; a set contains elements or members, which can be mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other #sets. The #set with no element is the empty

From playlist Set Theory

Video thumbnail

The perfect number of axioms | Axiomatic Set Theory, Section 1.1

In this video we introduce 6 of the axioms of ZFC set theory. My Twitter: https://twitter.com/KristapsBalodi3 Intro: (0:00) The Axiom of Existence: (2:39) The Axiom of Extensionality: (4:20) The Axiom Schema of Comprehension: (6:15) The Axiom of Pair (12:16) The Axiom of Union (15:15) T

From playlist Axiomatic Set Theory

Video thumbnail

Introduction to sets || Set theory Overview - Part 1

A set is the mathematical model for a collection of different things; a set contains elements or members, which can be mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other #sets. The #set with no element is the empty

From playlist Set Theory

Video thumbnail

Introduction to Set Theory (Discrete Mathematics)

Introduction to Set Theory (Discrete Mathematics) This is a basic introduction to set theory starting from the very beginning. This is typically found near the beginning of a discrete mathematics course in college or at the beginning of other advanced mathematics courses. ***************

From playlist Set Theory

Video thumbnail

Set Theory 1.1 : Axioms of Set Theory

In this video, I introduce the axioms of set theory and Russel's Paradox. Email : fematikaqna@gmail.com Code : https://github.com/Fematika/Animations Notes : http://docdro.id/5ITQHUW

From playlist Set Theory

Video thumbnail

How to Identify the Elements of a Set | Set Theory

Sets contain elements, and sometimes those elements are sets, intervals, ordered pairs or sequences, or a slew of other objects! When a set is written in roster form, its elements are separated by commas, but some elements may have commas of their own, making it a little difficult at times

From playlist Set Theory

Video thumbnail

Set Theory (Part 2b): The Bogus Universal Set

Please feel free to leave comments/questions on the video below! In this video, I argue against the existence of the set of all sets and show that this claim is provable in ZFC. This theorem is very much tied to the Russell Paradox, besides being one of the problematic ideas in mathematic

From playlist Set Theory by Mathoma

Video thumbnail

Inernal Languages for Higher Toposes - Michael Shulman

Michael Shulman University of California, San Diego; Member, School of Mathematics October 3, 2012 For more videos, visit http://video.ias.edu

From playlist Mathematics

Video thumbnail

Set Theory (Part 16): Correspondence Between Number Systems

Please feel free to leave comments/questions on the video and practice problems below! In this video, we will connect the number systems together through isomorphic embedding functions, so that operations are preserved across number systems. I will also argue that, in the strict sense, th

From playlist Set Theory by Mathoma

Video thumbnail

David Michael ROBERTS - Class forcing and topos theory

It is well-known that forcing over a model of material set theory co rresponds to taking sheaves over a small site (a poset, a complete Boolean algebra, and so on). One phenomenon that occurs is that given a small site, all new subsets created are smaller than a fixed bound depending on th

From playlist Topos à l'IHES

Video thumbnail

Rahim Moosa: Nonstandard compact complex manifolds with a generic auto-morphism

Find this video and other talks given by worldwide mathematicians on CIRM's Audiovisual Mathematics Library: http://library.cirm-math.fr. And discover all its functionalities: - Chapter markers and keywords to watch the parts of your choice in the video - Videos enriched with abstracts, b

From playlist Logic and Foundations

Video thumbnail

Joshua Wrigley - The Logic and Geometry of Localic Morphisms

Talk at the school and conference “Toposes online” (24-30 June 2021): https://aroundtoposes.com/toposesonline/ Slides: https://aroundtoposes.com/wp-content/uploads/2021/07/WrigleySlidesToposesOnline.pdf In this presentation, a substitutive syntactic site for the classifying topos of a ge

From playlist Toposes online

Video thumbnail

Simplicial Types - Peter Lumsdaine

Peter Lumsdaine Dalhousie University; Member, School of Mathematics January 16, 2013 For more videos, visit http://video.ias.edu

From playlist Mathematics

Video thumbnail

Ivan Tomasic

Cohomology in difference algebra and geometry We view difference algebra as the study of algebraic objects in the topos of difference sets, i.e., as `ordinary algebra’ in a new universe. The methods of topos theory and categorical logic enable us to develop difference homological algebra,

From playlist DART X

Video thumbnail

Moshe Kamensky 2/21/14 Part 4

Title: Picard-Vessiot Structures

From playlist Spring 2014

Video thumbnail

Ingo BLECHSCHMIDT - Using the internal language of toposes in algebraic geometry

We describe how the internal language of certain toposes, the associated petit and gros Zariski toposes of a scheme, can be used to give simpler denitions and more conceptual proofs of the basic notions and observations in algebraic geometry. The starting point is that, from the internal p

From playlist Topos à l'IHES

Video thumbnail

What is a Set Complement?

What is the complement of a set? Sets in mathematics are very cool, and one of my favorite thins in set theory is the complement and the universal set. In this video we will define complement in set theory, and in order to do so you will also need to know the meaning of universal set. I go

From playlist Set Theory

Video thumbnail

Ximena Fernández 7/20/22: Morse theory for group presentations and the persistent fundamental group

Discrete Morse theory is a combinatorial tool to simplify the structure of a given (regular) CW-complex up to homotopy equivalence, in terms of the critical cells of discrete Morse functions. In this talk, I will present a refinement of this theory that guarantees not only a homotopy equiv

From playlist AATRN 2022

Related pages

Richard Dedekind | Johann Bernoulli | Elliptic geometry | Nonstandard analysis | Model theory | Augustin-Louis Cauchy | Zermelo–Fraenkel set theory | Great circle | Conservative extension | Abraham Robinson | Set (mathematics) | Real number | Non-Euclidean geometry | Signature (logic) | Infinitesimal | Leonhard Euler | First-order logic | Finitism | Karl Weierstrass