Homotopy theory | Formal methods | Foundations of mathematics | Type theory

Homotopy type theory

In mathematical logic and computer science, homotopy type theory (HoTT /hɒt/) refers to various lines of development of intuitionistic type theory, based on the interpretation of types as objects to which the intuition of (abstract) homotopy theory applies. This includes, among other lines of work, the construction of homotopical and higher-categorical models for such type theories; the use of type theory as a logic (or internal language) for abstract homotopy theory and higher category theory; the development of mathematics within a type-theoretic foundation (including both previously existing mathematics and new mathematics that homotopical types make possible); and the formalization of each of these in computer proof assistants. There is a large overlap between the work referred to as homotopy type theory, and as the univalent foundations project. Although neither is precisely delineated, and the terms are sometimes used interchangeably, the choice of usage also sometimes corresponds to differences in viewpoint and emphasis. As such, this article may not represent the views of all researchers in the fields equally. This kind of variability is unavoidable when a field is in rapid flux. (Wikipedia).

Homotopy type theory
Video thumbnail

Homotopy type theory: working invariantly in homotopy theory -Guillaume Brunerie

Short talks by postdoctoral members Topic: Homotopy type theory: working invariantly in homotopy theory Speaker: Guillaume Brunerie Affiliation: Member, School of Mathematics Date: September 26, 2017 For more videos, please visit http://video.ias.edu

From playlist Mathematics

Video thumbnail

Homotopy Group - (1)Dan Licata, (2)Guillaume Brunerie, (3)Peter Lumsdaine

(1)Carnegie Mellon Univ.; Member, School of Math, (2)School of Math., IAS, (3)Dalhousie Univ.; Member, School of Math April 11, 2013 In this general survey talk, we will describe an approach to doing homotopy theory within Univalent Foundations. Whereas classical homotopy theory may be des

From playlist Mathematics

Video thumbnail

Introduction to Homotopy Theory- PART 1: UNIVERSAL CONSTRUCTIONS

The goal of this series is to develop homotopy theory from a categorical perspective, alongside the theory of model categories. We do this with the hope of eventually developing stable homotopy theory, a personal goal a passion of mine. I'm going to follow nLab's notes, but I hope to add t

From playlist Introduction to Homotopy Theory

Video thumbnail

Introduction to Homotopy Theory- Part 5- Transition to Abstract Homotopy Theory

Credits: nLab: https://ncatlab.org/nlab/show/Introdu...​ Animation library: https://github.com/3b1b/manim​​​ Music: ► Artist Attribution • Music By: "KaizanBlu" • Track Name: "Remember (Extended Mix)" • YouTube Track Link: https://bit.ly/31Ma5s0​​​ • Spotify Track Link: https://spoti.fi/

From playlist Introduction to Homotopy Theory

Video thumbnail

Thorsten Altenkirch - 1/2 Towards a Syntax for Cubical Type Theory

One of the key problems of Homotopy Type Theory is that it introduces axioms such as extensionality and univalence for which there is no known computational interpretation. We propose to overcome this by introducing a Type Theory where a heterogenous equality is defined recursively and equ

From playlist T2-2014 : Semantics of proofs and certified mathematics

Video thumbnail

Homotopy

Homotopy elements in the homotopy group π₂(S²) ≅ ℤ. Roman Gassmann and Tabea Méndez suggested some improvements to my original ideas.

From playlist Algebraic Topology

Video thumbnail

Homotopy Type Theory: what can logic do for homotopy theory? - Peter Lumsdaine

Peter Lumsdaine Homotopy Type Theory: what can logic do for homotopy theory? Institute for Advanced Study; Member, School of Mathematics October 4, 2013 For more videos, visit http://video.ias.edu

From playlist Mathematics

Video thumbnail

Christian Sattler: Do cubical models of type theory also model homotopy types

The lecture was held within the framework of the Hausdorff Trimester Program: Types, Sets and Constructions. Abstract: I will give an alternative exposition of Kapulkin and Voevodsky's result about simplicial sets forming a subtopos of certain cubical sets: https://arxiv.org/abs/1805.0412

From playlist Workshop: "Types, Homotopy, Type theory, and Verification"

Video thumbnail

Algebraic Topology - 11.3 - Homotopy Equivalence

We sketch why that the homotopy category is a category.

From playlist Algebraic Topology

Video thumbnail

Invariant homotopy theory in the univalent foundations - Guillaume Brunerie

Topic: Invariant homotopy theory in the univalent foundations Speaker: Guillaume Brunerie, Member, School of Mathematics Time/Room: 4:00pm - 4:15pm/S-101 More videos on http://video.ias.edu

From playlist Mathematics

Video thumbnail

Even spaces and motivic resolutions - Michael Hopkins

Vladimir Voevodsky Memorial Conference Topic: Even spaces and motivic resolutions Speaker: Michael Hopkins Affiliation: Harvard University Date: September 13, 2018 For more video please visit http://video.ias.edu

From playlist Mathematics

Video thumbnail

Computational Complexity Classes, Homotopy Classes and N-machines

Examined herein is the possible correspondence between computational complexity classes in computational graphs and higher homotopy classes between computability paths via the application of two methods. The first method is the use of category theory for formalizing a model of (categorifie

From playlist Wolfram Technology Conference 2021

Video thumbnail

Univalent Foundations Seminar - Steve Awodey

Steve Awodey Carnegie Mellon University; Member, School of Mathematics November 19, 2012 For more videos, visit http://video.ias.edu

From playlist Mathematics

Video thumbnail

Christoph Winges: Automorphisms of manifolds and the Farrell Jones conjectures

The lecture was held within the framework of the Hausdorff Trimester Program: K-Theory and Related Fields. Building on previous work of Bartels, Lück, Reich and others studying the algebraic K-theory and L-theory of discrete group rings, the validity of the Farrell-Jones Conjecture has be

From playlist HIM Lectures: Trimester Program "K-Theory and Related Fields"

Video thumbnail

Clark Barwick - 1/3 Exodromy for ℓ-adic Sheaves

In joint work with Saul Glasman and Peter Haine, we proved that the derived ∞-category of constructible ℓ-adic sheaves ’is’ the ∞-category of continuous functors from an explicitly defined 1-category to the ∞-category of perfect complexes over ℚℓ. In this series of talks, I want to offer s

From playlist Summer School 2020: Motivic, Equivariant and Non-commutative Homotopy Theory

Video thumbnail

Constructive Type Theory and Homotopy - Steve Awodey

Steve Awodey Institute for Advanced Study December 3, 2010 In recent research it has become clear that there are fascinating connections between constructive mathematics, especially as formulated in the type theory of Martin-Löf, and homotopy theory, especially in the modern treatment in

From playlist Mathematics

Video thumbnail

Diego Mondéjar Ruiz (6/10/22): Approximation of compact metric spaces by finite samples

We address the problem of reconstructing topological properties of a compact metric space by means of simpler ones. In this context, we use inverse sequences of finite topological spaces and polyhedra made from finite approximations of the space. This construction is related with Borsuk's

From playlist Vietoris-Rips Seminar

Video thumbnail

Cohomology in Homotopy Type Theory - Eric Finster

Eric Finster Ecole Polytechnique Federal de Lausanne; Member, School of Mathematics March 6, 2013 For more videos, visit http://video.ias.edu

From playlist Mathematics

Related pages

Category of sets | Intuitionistic type theory | Identity type | Homotopy | Kan fibration | Proof assistant | Calculus of constructions | Groupoid | Topology | Homotopical algebra | Coherence condition | Lambda calculus | Dimension | Mathematical folklore | Homotopy theory | Path space (algebraic topology) | Higher category theory | Dependent type | Coq | Path (topology) | Curry–Howard correspondence | Category theory | Formal proof | Univalent foundations | Fibration | Mathematical logic | Vladimir Voevodsky | Homotopy hypothesis | First-order logic | Simplicial set | Model category