Hyperbolic geometry

Hjelmslev transformation

In mathematics, the Hjelmslev transformation is an effective method for mapping an entire hyperbolic plane into a circle with a finite radius. The transformation was invented by Danish mathematician Johannes Hjelmslev. It utilizes Nikolai Ivanovich Lobachevsky's 23rd theorem from his work . Lobachevsky observes, using a combination of his 16th and 23rd theorems, that it is a fundamental characteristic of hyperbolic geometry that there must exist a distinct angle of parallelism for any given line length. Let us say for the length AE, its angle of parallelism is angle BAF. This being the case, line AH and EJ will be hyperparallel, and therefore will never meet. Consequently, any line drawn perpendicular to base AE between A and E must necessarily cross line AH at some finite distance. Johannes Hjelmslev discovered from this a method of compressing an entire hyperbolic plane into a finite circle. The method is as follows: for any angle of parallelism, draw from its line AE a perpendicular to the other ray; using that cutoff length, e.g., AH, as the radius of a circle, "map" the point H onto the line AE. This point H thus mapped must fall between A and E. By applying this process for every line within the plane, the infinite hyperbolic space thus becomes contained and planar. Hjelmslev's transformation does not yield a proper circle however. The circumference of the circle created does not have a corresponding location within the plane, and therefore, the product of a Hjelmslev transformation is more aptly called a Hjelmslev Disk. Likewise, when this transformation is extended in all three dimensions, it is referred to as a Hjelmslev Ball. There are a few properties that are retained through the transformation which enable valuable information to be ascertained therefrom, namely: 1. * The image of a circle sharing the center of the transformation will be a circle about this same center. 2. * As a result, the images of all the right angles with one side passing through the center will be right angles. 3. * Any angle with the center of the transformation as its vertex will be preserved. 4. * The image of any straight line will be a finite straight line segment. 5. * Likewise, the point order is maintained throughout a transformation, i.e. if B is between A and C, the image of B will be between the image of A and the image of C. 6. * The image of a rectilinear angle is a rectilinear angle. (Wikipedia).

Hjelmslev transformation
Video thumbnail

Laplace Transformation: e^-bt*sin(at) und e^-bt*cos(at)

Englische Version: https://youtu.be/rLiOJxu_R2s Heute erlernen wir die Laplace Transformation der gedämpften Sinus und Cosinus Schwingung. Erneut transformieren wir beide Identitäten auf einen Streich.

From playlist Laplace Transformation

Video thumbnail

Laplace Transformation: Die Zeiteinheit t

Englische Version: https://youtu.be/V9g-h1Tgnco Heute Laplace transformieren wir die Zeiteinheit t. Wir nutzen hierzu partielle Integration und stellen wie eh und je Konvergenzen fest.

From playlist Laplace Transformation

Video thumbnail

Laplace Transformation: t*e^-at

Englische Version: Heute besprechen wir die Laplace Transformation einer Zeiteinheit t multipliziert mit der Exponentialfunktion.

From playlist Laplace Transformation

Video thumbnail

Laplace Transformation: f(t)

Englische Version: https://youtu.be/C1cbaDIaVjM Heute erlernen wir, wie wir unter der Annahme der Existenz, eine Zeitabhängige Funktion Laplace transformieren.

From playlist Laplace Transformation

Video thumbnail

Laplace Transformation: f''(t) - Die zweite Ableitung von f(t)

Englische Version: https://youtu.be/bKmDvebMfNI Heute werden wir die Laplace transformierte, zweite Ableitung einer zeitabhängigen Funktion besprechen. Hierzu sollte man die folgenden Laplace Transformationen beherrschen: Transformierte Funktion:https://www.youtube.com/watch?v=C-jY5lxWLf

From playlist Laplace Transformation

Video thumbnail

Linear Algebra 15c: The Reflection Transformation and Introduction to Eigenvalues

https://bit.ly/PavelPatreon https://lem.ma/LA - Linear Algebra on Lemma http://bit.ly/ITCYTNew - Dr. Grinfeld's Tensor Calculus textbook https://lem.ma/prep - Complete SAT Math Prep

From playlist Part 3 Linear Algebra: Linear Transformations

Video thumbnail

2.2.2 What is a linear transformation?

2.2.2 What is a linear transformation?

From playlist LAFF - Week 2

Video thumbnail

Symmetrization

In this video, I define a cool operation called the symmetrization, which turns any matrix into a symmetric matrix. Along the way, I also explain how to show that an (abstract) linear transformation is one-to-one and onto. Finally, I show how to decompose and matrix in a nice way, sort of

From playlist Linear Transformations

Video thumbnail

Laplace Transformation: Die Heaviside-Funktion ℒ{1} und ℒ{0}

Englische Version: https://youtu.be/5RCijylGyK4 Heute werden wir den Start in eine neue Serie von Videos wagen. Wir begeben uns mit kleinen Schritten zu dem Thema des Lösens von Differentialgleichungen. Hierzu werden wir die Grundlagen der Laplace Transformation erlernen. Es geht los mit

From playlist Laplace Transformation

Video thumbnail

Compositional Structure of Classical Integral Transforms

The recently implemented fractional order integro-differentiation operator, FractionalD, is a particular case of more general integral transforms. The majority of classical integral transforms are representable as compositions of only two transforms: the modified direct and inverse Laplace

From playlist Wolfram Technology Conference 2022

Video thumbnail

Lecture 22, The z-Transform | MIT RES.6.007 Signals and Systems, Spring 2011

Lecture 22, The z-Transform Instructor: Alan V. Oppenheim View the complete course: http://ocw.mit.edu/RES-6.007S11 License: Creative Commons BY-NC-SA More information at http://ocw.mit.edu/terms More courses at http://ocw.mit.edu

From playlist MIT RES.6.007 Signals and Systems, 1987

Video thumbnail

Lecture 7 | The Fourier Transforms and its Applications

Lecture by Professor Brad Osgood for the Electrical Engineering course, The Fourier Transforms and its Applications (EE 261). Professor Osgood reintroduces the Fourier Transform and its inverse, then he goes into specific properties and transforms. The Fourier transform is a tool for s

From playlist Lecture Collection | The Fourier Transforms and Its Applications

Video thumbnail

Lecture 13 | The Fourier Transforms and its Applications

Lecture by Professor Brad Osgood for the Electrical Engineering course, The Fourier Transforms and its Applications (EE 261). In this lecture, Professor Osgood demonstrates Fourier transforms of a general distribution. The Fourier transform is a tool for solving physical problems. In t

From playlist Lecture Collection | The Fourier Transforms and Its Applications

Video thumbnail

ME565 Lecture 21: The Laplace Transform

ME565 Lecture 21 Engineering Mathematics at the University of Washington Laplace Transform Notes: http://faculty.washington.edu/sbrunton/me565/pdf/L21.pdf Course Website: http://faculty.washington.edu/sbrunton/me565/ http://faculty.washington.edu/sbrunton/

From playlist Engineering Mathematics (UW ME564 and ME565)

Video thumbnail

Lec 5 | MIT RES.6-008 Digital Signal Processing, 1975

Lecture 5: The z-transform Instructor: Alan V. Oppenheim View the complete course: http://ocw.mit.edu/RES6-008S11 License: Creative Commons BY-NC-SA More information at http://ocw.mit.edu/terms More courses at http://ocw.mit.edu

From playlist MIT RES.6-008 Digital Signal Processing, 1975

Video thumbnail

The Laplace Transform: A Generalized Fourier Transform

This video is about the Laplace Transform, a powerful generalization of the Fourier transform. It is one of the most important transformations in all of science and engineering. @eigensteve on Twitter Brunton Website: eigensteve.com Book Website: http://databookuw.com Book PDF: http:/

From playlist Data-Driven Science and Engineering

Video thumbnail

Lecture: The Z transform 2018-10-29

This (long) video takes you all the way through the process of understanding the Z transform and how it relates to the Laplace transform for simulation.

From playlist Discrete

Video thumbnail

Laplace Transform: First Order Equation

MIT RES.18-009 Learn Differential Equations: Up Close with Gilbert Strang and Cleve Moler, Fall 2015 View the complete course: http://ocw.mit.edu/RES-18-009F15 Instructor: Gilbert Strang Transform each term in the linear differential equation to create an algebra problem. You can transfor

From playlist Fourier

Video thumbnail

What is an enlargement dilation

👉 Learn about dilations. Dilation is the transformation of a shape by a scale factor to produce an image that is similar to the original shape but is different in size from the original shape. A dilation that creates a larger image is called an enlargement or a stretch while a dilation tha

From playlist Transformations

Video thumbnail

The Fourier Transform Part 2

Lecture with Ole Christensen. Kapitler: 00:00 - Reaching The Goal; 05:00 - Problem With The Fourier Transform; 13:45 - Where Does The Fourier Transform Map Into?; 16:45 - Is F Bounded?; 20:00 - Fourier Transform On L2; 30:00 - Using The Extension Theorem;

From playlist DTU: Mathematics 4 Real Analysis | CosmoLearning.org Math

Related pages

Hyperbolic space | Map (mathematics) | Hjelmslev's theorem | Angle of parallelism | Mathematics | Hyperbolic geometry | Circle | Johannes Hjelmslev | Radius