Homology theory

Cohomology ring

In mathematics, specifically algebraic topology, the cohomology ring of a topological space X is a ring formed from the cohomology groups of X together with the cup product serving as the ring multiplication. Here 'cohomology' is usually understood as singular cohomology, but the ring structure is also present in other theories such as de Rham cohomology. It is also functorial: for a continuous mapping of spaces one obtains a ring homomorphism on cohomology rings, which is contravariant. Specifically, given a sequence of cohomology groups Hk(X;R) on X with coefficients in a commutative ring R (typically R is Zn, Z, Q, R, or C) one can define the cup product, which takes the form The cup product gives a multiplication on the direct sum of the cohomology groups This multiplication turns H•(X;R) into a ring. In fact, it is naturally an N-graded ring with the nonnegative integer k serving as the degree. The cup product respects this grading. The cohomology ring is graded-commutative in the sense that the cup product commutes up to a sign determined by the grading. Specifically, for pure elements of degree k and ℓ; we have A numerical invariant derived from the cohomology ring is the cup-length, which means the maximum number of graded elements of degree ≥ 1 that when multiplied give a non-zero result. For example a complex projective space has cup-length equal to its complex dimension. (Wikipedia).

Video thumbnail

Darij Grinberg -Quotients of Symmetric Polynomial Rings Deforming theCohomology of the Grassmannian

One of the many connections between Grassmannians and combinatorics is cohomological: The cohomology ring of a Grassmannian Gr(k,n) is a quotient of the ring S of symmetric polynomials in k variables. More precisely, it is the quotient of S by the ideal generated by the k consecutive compl

From playlist Combinatorics and Arithmetic for Physics: 02-03 December 2020

Video thumbnail

Teach Astronomy - Cosmology

http://www.teachastronomy.com/ Cosmology is the study of the universe, its history, and everything in it. It comes from the Greek root of the word cosmos for order and harmony which reflected the Greek belief that the universe was a harmonious entity where everything worked in concert to

From playlist 22. The Big Bang, Inflation, and General Cosmology

Video thumbnail

RNT1.1. Definition of Ring

Ring Theory: We define rings and give many examples. Items under consideration include commutativity and multiplicative inverses. Example include modular integers, square matrices, polynomial rings, quaternions, and adjoins of algebraic and transcendental numbers.

From playlist Abstract Algebra

Video thumbnail

Definition of a Ring and Examples of Rings

Please Subscribe here, thank you!!! https://goo.gl/JQ8Nys Definition of a Ring and Examples of Rings - Definition of a Ring. - Definition of a commutative ring and a ring with identity. - Examples of Rings include: Z, Q, R, C under regular addition and multiplication The Ring of all n x

From playlist Abstract Algebra

Video thumbnail

Aurel PAGE - Cohomology of arithmetic groups and number theory: geometric, ... 2

In this lecture series, the first part will be dedicated to cohomology of arithmetic groups of lower ranks (e.g., Bianchi groups), their associated geometric models (mainly from hyperbolic geometry) and connexion to number theory. The second part will deal with higher rank groups, mainly

From playlist École d'Été 2022 - Cohomology Geometry and Explicit Number Theory

Video thumbnail

Aurel PAGE - Cohomology of arithmetic groups and number theory: geometric, ... 1

In this lecture series, the first part will be dedicated to cohomology of arithmetic groups of lower ranks (e.g., Bianchi groups), their associated geometric models (mainly from hyperbolic geometry) and connexion to number theory. The second part will deal with higher rank groups, mainly

From playlist École d'Été 2022 - Cohomology Geometry and Explicit Number Theory

Video thumbnail

Paul GUNNELLS - Cohomology of arithmetic groups and number theory: geometric, ... 2

In this lecture series, the first part will be dedicated to cohomology of arithmetic groups of lower ranks (e.g., Bianchi groups), their associated geometric models (mainly from hyperbolic geometry) and connexion to number theory. The second part will deal with higher rank groups, mainly

From playlist École d'Été 2022 - Cohomology Geometry and Explicit Number Theory

Video thumbnail

Abstract Algebra | The motivation for the definition of an ideal.

Towards the goal of creating a quotient ring, we uncover the defintion of an ideal. http://www.michael-penn.net https://www.researchgate.net/profile/Michael_Penn5 http://www.randolphcollege.edu/mathematics/

From playlist Abstract Algebra

Video thumbnail

Nero Budur: Cohomology jump loci and singularities

Find this video and other talks given by worldwide mathematicians on CIRM's Audiovisual Mathematics Library: http://library.cirm-math.fr. And discover all its functionalities: - Chapter markers and keywords to watch the parts of your choice in the video - Videos enriched with abstracts, b

From playlist Algebraic and Complex Geometry

Video thumbnail

Duality for Rabinowitz-Floer homology - Alex Oancea

IAS/PU-Montreal-Paris-Tel-Aviv Symplectic Geometry Topic: Duality for Rabinowitz-Floer homology Speaker: Alex Oancea Affiliation: Institut de Mathématiques de Jussieu-Paris Rive Gauche Date: May 27, 2020 For more video please visit http://video.ias.edu

From playlist PU/IAS Symplectic Geometry Seminar

Video thumbnail

Jennifer WILSON - High dimensional cohomology of SL_n(Z) and its principal congruence subgroups 1

Group cohomology of arithmetic groups is ubiquitous in the study of arithmetic K-theory and algebraic number theory. Rationally, SL_n(Z) and its finite index subgroups don't have cohomology above dimension n choose 2. Using Borel-Serre duality, one has access to the high dimensions. Church

From playlist École d'Été 2022 - Cohomology Geometry and Explicit Number Theory

Video thumbnail

B. Bhatt - Prisms and deformations of de Rham cohomology

Prisms are generalizations of perfectoid rings to a setting where "Frobenius need not be an isomorphism". I will explain the definition and use it to construct a prismatic site for any scheme. The resulting prismatic cohomology often gives a one-parameter deformation of de Rham cohomology.

From playlist Arithmetic and Algebraic Geometry: A conference in honor of Ofer Gabber on the occasion of his 60th birthday

Video thumbnail

Lars Hesselholt: Around topological Hochschild homology (Lecture 8)

The lecture was held within the framework of the (Junior) Hausdorff Trimester Program Topology: "Workshop: Hermitian K-theory and trace methods" Introduced by Bökstedt in the late eighties, topological Hochschild homology is a manifestation of the dual visions of Connes and Waldhausen to

From playlist HIM Lectures: Junior Trimester Program "Topology"

Video thumbnail

A Gentle Approach to Crystalline Cohomology - Jacob Lurie

Members’ Colloquium Topic: A Gentle Approach to Crystalline Cohomology Speaker: Jacob Lurie Affiliation: Professor, School of Mathematics Date: February 28, 2022 Let X be a smooth affine algebraic variety over the field C of complex numbers (that is, a smooth submanifold of C^n which can

From playlist Mathematics

Video thumbnail

The cup product operation [Ling Zhou]

In this tutorial, you will learn about the cup product operation in the simplicial setting, and go through an example of computing it in the 2-torus. The cup product induces a ring structure on cohomology, making it more informative than homology. In the TDA community, many attentions have

From playlist Tutorial-a-thon 2021 Fall

Video thumbnail

Peter PATZT - High dimensional cohomology of SL_n(Z) and its principal congruence subgroups 4

Group cohomology of arithmetic groups is ubiquitous in the study of arithmetic K-theory and algebraic number theory. Rationally, SL_n(Z) and its finite index subgroups don't have cohomology above dimension n choose 2. Using Borel-Serre duality, one has access to the high dimensions. Church

From playlist École d'Été 2022 - Cohomology Geometry and Explicit Number Theory

Video thumbnail

Lars Hesselholt: Around topological Hochschild homology (Lecture 7)

The lecture was held within the framework of the (Junior) Hausdorff Trimester Program Topology: "Workshop: Hermitian K-theory and trace methods" Introduced by Bökstedt in the late eighties, topological Hochschild homology is a manifestation of the dual visions of Connes and Waldhausen to

From playlist HIM Lectures: Junior Trimester Program "Topology"

Video thumbnail

James Borger: The geometric approach to cohomology Part I

SMRI Seminar Course: 'The geometric approach to cohomology' Part I James Borger (Australian National University) Abstract: The aim of these two talks is to give an overview of the geometric aka stacky approach to various cohomology theories for schemes: de Rham, Hodge, crystalline and pr

From playlist SMRI Course: The geometric approach to cohomology

Related pages

Quantum cohomology | Cohomology | De Rham cohomology | Cup product | Topological space | Complex dimension | Graded ring | Mathematics | Ring homomorphism | Direct sum of modules | Algebraic topology | Complex projective space | Ring (mathematics) | Commutative ring