Curves | Algebraic curves

Cissoid

In geometry, a cissoid ((from Ancient Greek κισσοειδής (kissoeidēs) 'ivy-shaped') is a plane curve generated from two given curves C1, C2 and a point O (the pole). Let L be a variable line passing through O and intersecting C1 at P1 and C2 at P2. Let P be the point on L so that (There are actually two such points but P is chosen so that P is in the same direction from O as P2 is from P1.) Then the locus of such points P is defined to be the cissoid of the curves C1, C2 relative to O. Slightly different but essentially equivalent definitions are used by different authors. For example, P may be defined to be the point so that This is equivalent to the other definition if C1 is replaced by its reflection through O. Or P may be defined as the midpoint of P1 and P2; this produces the curve generated by the previous curve scaled by a factor of 1/2. (Wikipedia).

Cissoid
Video thumbnail

Dimensions (1 of 3: The Traditional Definition - Directions)

More resources available at www.misterwootube.com

From playlist Exploring Mathematics: Fractals

Video thumbnail

Cycloid

#Cycloid: A curve traced by a point on a circle rolling in a straight line. (A preview of this Sunday's video.)

From playlist Miscellaneous

Video thumbnail

What is the definition of a hyperbola

Learn all about hyperbolas. A hyperbola is a conic section with two fixed points called the foci such that the difference between the distances of any point on the hyperbola from the two foci is equal to the distance between the two foci. Some of the characteristics of a hyperbola includ

From playlist The Hyperbola in Conic Sections

Video thumbnail

What is the definition of a hyperbola

Learn all about hyperbolas. A hyperbola is a conic section with two fixed points called the foci such that the difference between the distances of any point on the hyperbola from the two foci is equal to the distance between the two foci. Some of the characteristics of a hyperbola includ

From playlist The Hyperbola in Conic Sections

Video thumbnail

Dynamics : An overview of the cause of mechanics

Dynamics is a subset of mechanics, which is the study of motion. Whereas kinetics studies that motion itself, dynamics is concerned about the CAUSES of motion. In particular, it involves the concepts of force, momentum and energy. This video gives an overview of what dynamics is, and is u

From playlist Dynamics

Video thumbnail

Hyperbola 3D Animation | Objective conic hyperbola | Digital Learning

Hyperbola 3D Animation In mathematics, a hyperbola is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected components or branches, that are mirror images of each other an

From playlist Maths Topics

Video thumbnail

What is a perpendicular bisector

👉 Learn the essential definitions of triangles. A triangle is a polygon with three sides. Triangles are classified on the basis of their angles or on the basis of their side lengths. The classification of triangles on the bases of their angles are: acute, right and obtuse triangles. The cl

From playlist Types of Triangles and Their Properties

Video thumbnail

What is a line bisector

👉 Learn the essential definitions of triangles. A triangle is a polygon with three sides. Triangles are classified on the basis of their angles or on the basis of their side lengths. The classification of triangles on the bases of their angles are: acute, right and obtuse triangles. The cl

From playlist Types of Triangles and Their Properties

Video thumbnail

Metacognition and speaking | Introduction | Part 1

In this video, I provide an overview of metacognition and discuss its role in speaking.

From playlist Metacognition

Video thumbnail

A tutorial: some differential geometry problems | Differential Geometry 21 | NJ Wildberger

Here we go over in some detail three problems that were assigned earlier in the course: the rational parametrization of the cissoid, the parametrization of a particular conic x^2-4xy-2y^2=3, and finding the evolute of the curve y=x^n for a general n. Note that in my diagram around 14:00

From playlist Differential Geometry

Video thumbnail

Classical curves | Differential Geometry 1 | NJ Wildberger

The first lecture of a beginner's course on Differential Geometry! Given by Prof N J Wildberger of the School of Mathematics and Statistics at UNSW. Differential geometry is the application of calculus and analytic geometry to the study of curves and surfaces, and has numerous applications

From playlist Differential Geometry

Video thumbnail

Learn to basics of eliminating the parameter with sine and cosine

Learn how to eliminate the parameter in a parametric equation. A parametric equation is a set of equations that express a set of quantities as explicit functions of a number of independent variables, known as parameters. Eliminating the parameter allows us to write parametric equation in r

From playlist Parametric Equations

Related pages

Strophoid | Cissoid of Diocles | Folium of Descartes | Conchoid (mathematics) | Point reflection | Conchoid of de Sluze | Ellipse | Conic section | Geometry | Trisectrix of Maclaurin