Fixed points (mathematics) | General equilibrium theory

Applied general equilibrium

In mathematical economics, applied general equilibrium (AGE) models were pioneered by Herbert Scarf at Yale University in 1967, in two papers, and a follow-up book with Terje Hansen in 1973, with the aim of empirically estimating the Arrow–Debreu model of general equilibrium theory with empirical data, to provide "“a general method for the explicit numerical solution of the neoclassical model”(Scarf with Hansen 1973: 1) Scarf's method iterated a sequence of simplicial subdivisions which would generate a decreasing sequence of simplices around any solution of the general equilibrium problem. With sufficiently many steps, the sequence would produce a price vector that clears the market. Brouwer's Fixed Point theorem states that a continuous mapping of a simplex into itself has at least one fixed point. This paper describes a numerical algorithm for approximating, in a sense to be explained below, a fixed point of such a mapping (Scarf 1967a: 1326). Scarf never built an AGE model, but hinted that “these novel numerical techniques might be useful in assessing consequences for the economy of a change in the economic environment” (Kehoe et al. 2005, citing Scarf 1967b). His students elaborated the Scarf algorithm into a tool box, where the price vector could be solved for any changes in policies (or exogenous shocks), giving the equilibrium ‘adjustments’ needed for the prices. This method was first used by Shoven and Whalley (1972 and 1973), and then was developed through the 1970s by Scarf’s students and others. Most contemporary applied general equilibrium models are numericalanalogs of traditional two-sector general equilibrium models popularizedby James Meade, Harry Johnson, Arnold Harberger, and others in the1950s and 1960s. Earlier analytic work with these models has examinedthe distortionary effects of taxes, tariffs, and other policies, along withfunctional incidence questions. More recent applied models, includingthose discussed here, provide numerical estimates of efficiency and distributionaleffects within the same framework. Scarf's fixed-point method was a break-through in the mathematics of computation generally, and specifically in optimization and computational economics. Later researchers continued to develop iterative methods for computing fixed-points, both for topological models like Scarf's and for models described by functions with continuous second derivatives or convexity or both. Of course, "global Newton methods" for essentially convex and smooth functions and path-following methods for diffeomorphisms converged faster than did robust algorithms for continuous functions, when the smooth methods are applicable. (Wikipedia).

Video thumbnail

What is general relativity?

Subscribe to our YouTube Channel for all the latest from World Science U. Visit our Website: http://www.worldscienceu.com/ Like us on Facebook: https://www.facebook.com/worldscienceu Follow us on Twitter: https://twitter.com/worldscienceu

From playlist Science Unplugged: General Relativity

Video thumbnail

General solution of a separable equation

Learn how to solve the particular solution of differential equations. A differential equation is an equation that relates a function with its derivatives. The solution to a differential equation involves two parts: the general solution and the particular solution. The general solution give

From playlist Differential Equations

Video thumbnail

How to determine the general solution to a differential equation

Learn how to solve the particular solution of differential equations. A differential equation is an equation that relates a function with its derivatives. The solution to a differential equation involves two parts: the general solution and the particular solution. The general solution give

From playlist Differential Equations

Video thumbnail

Understand The Work Equation!! (Mechanics)

#Physics #Mechanics #Engineering #TikTok #NicholasGKK #Shorts

From playlist General Mechanics

Video thumbnail

Differential Equations | Applications of Second Order DEs: Central Force

We use a second order differential equation to describe the motion of an object under the influence of a central force. http://www.michael-penn.net

From playlist Differential Equations

Video thumbnail

Solve the general solution for differentiable equation with trig

Learn how to solve the particular solution of differential equations. A differential equation is an equation that relates a function with its derivatives. The solution to a differential equation involves two parts: the general solution and the particular solution. The general solution give

From playlist Differential Equations

Video thumbnail

Differential Equations | First Order Linear System of DEs.

We solve a nonhomogeneous system of first order linear differential equations using a strategy inspired from solving a single first order linear differential equation. http://www.michael-penn.net http://www.randolphcollege.edu/mathematics/

From playlist Systems of Differential Equations

Video thumbnail

What is the difference between Special and General Relativity?

Subscribe to our YouTube Channel for all the latest from World Science U. Visit our Website: http://www.worldscienceu.com/ Like us on Facebook: https://www.facebook.com/worldscienceu Follow us on Twitter: https://twitter.com/worldscienceu

From playlist Science Unplugged: General Relativity

Video thumbnail

Mod-05 Lec-36 Subgame Perfect Nash Equilibrium

Game Theory and Economics by Dr. Debarshi Das, Department of Humanities and Social Sciences, IIT Guwahati. For more details on NPTEL visit http://nptel.iitm.ac.in

From playlist IIT Guwahati: Game Theory and Economics | CosmoLearning.org Economics

Video thumbnail

Peter E. Caines: Graphon Mean Field Games and the GMFG Equations

Very large networks linking dynamical agents are now ubiquitous and there is significant interest in their analysis, design and control. The emergence of the graphon theory of large networks and their infinite limits has recently enabled the formulation of a theory of the centralized contr

From playlist Probability and Statistics

Video thumbnail

General Chemistry 1C. Lecture 13. Aqueous Equilibria Pt. 2.

UCI Chem 1C General Chemistry (Spring 2013) Lec 13. General Chemistry -- Aqueous Equilibria -- Part 2 View the complete course: http://ocw.uci.edu/courses/chem_1c_general_chemistry.html Instructor: Ramesh D. Arasasingham, Ph.D. License: Creative Commons BY-NC-SA Terms of Use: http://ocw.u

From playlist Chemistry 1C: General Chemistry

Video thumbnail

Large deviations in Nonequilibrium (Lecture 5) by Christian Maes

PROGRAM : FLUCTUATIONS IN NONEQUILIBRIUM SYSTEMS: THEORY AND APPLICATIONS ORGANIZERS : Urna Basu and Anupam Kundu DATE : 09 March 2020 to 19 March 2020 VENUE : Madhava Lecture Hall, ICTS, Bangalore THIS PROGRAM HAS BEEN MODIFIED ONLY FOR LOCAL (BANGALORE) PARTICIPANTS DUE TO COVID-19 RI

From playlist Fluctuations in Nonequilibrium Systems: Theory and Applications

Video thumbnail

Jules Hedges - compositional game theory - part III

Compositional game theory is an approach to game theory that is designed to have better mathematical (loosely “algebraic” and “geometric”) properties, while also being intended as a practical setting for microeconomic modelling. It gives a graphical representation of games in which the flo

From playlist compositional game theory

Video thumbnail

Comparing Equilibrium States from Partition Function and Dynamics by Prabodh Shukla

DISCUSSION MEETING STATISTICAL PHYSICS: RECENT ADVANCES AND FUTURE DIRECTIONS (ONLINE) ORGANIZERS: Sakuntala Chatterjee (SNBNCBS, Kolkata), Kavita Jain (JNCASR, Bangalore) and Tridib Sadhu (TIFR, Mumbai) DATE: 14 February 2022 to 15 February 2022 VENUE: Online In the past few dec

From playlist Statistical Physics: Recent advances and Future directions (ONLINE) 2022

Video thumbnail

Bruce Turkington (DDMCS@Turing): Models that minimize the rate of information loss

Complex models in all areas of science and engineering, and in the social sciences, must be reduced to a relatively small number of variables for practical computation and accurate prediction. In general, it is difficult to identify and parameterize the crucial features that must be incorp

From playlist Data driven modelling of complex systems

Video thumbnail

Levon Nurbekyan: "Computational methods for mean-field games (Part 1/2)"

Watch part 2/2 here: https://youtu.be/QhGFzKGpRPA High Dimensional Hamilton-Jacobi PDEs Tutorials 2020 "Computational methods for mean-field games (Part 1/2)" Levon Nurbekyan - University of California, Los Angeles Abstract: I will give an overview of computational methods for mean-fiel

From playlist High Dimensional Hamilton-Jacobi PDEs 2020

Video thumbnail

Abel in Paris - Éva Tardos (Cornell University): "Quality of equilibria and effect of learning...

Abel in Paris - Éva Tardos (Cornell University): "Quality of equilibria and effect of learning in games" Éva Tardos est professeure en informatique à l’université de Cornell (Ithaca, New York). Sa recherche porte sur des algorithmes appliqués aux jeux en réseaux et aux ventes aux

From playlist Abel in PARIS - IHP - 2015

Video thumbnail

Analysis of Mean-Field Games (Lecture 1) by Kavita Ramanan

PROGRAM: ADVANCES IN APPLIED PROBABILITY ORGANIZERS: Vivek Borkar, Sandeep Juneja, Kavita Ramanan, Devavrat Shah, and Piyush Srivastava DATE & TIME: 05 August 2019 to 17 August 2019 VENUE: Ramanujan Lecture Hall, ICTS Bangalore Applied probability has seen a revolutionary growth in resear

From playlist Advances in Applied Probability 2019

Video thumbnail

Reduction of Order - Linear Second Order Homogeneous Differential Equations Part 1

This video explains how to apply the method of reduction of order to solve a linear second order homogeneous differential equations. Site: http://mathispower4u

From playlist Second Order Differential Equations: Reduction of Order

Related pages

Brouwer fixed-point theorem | Mathematical economics | Arrow–Debreu model | General equilibrium theory | Diffeomorphism | Analysis | Newton's method | Herbert Scarf