Useful Links
Mathematics
Vertex Algebras
1. Foundations and Motivation
2. Mathematical Preliminaries
3. Basic Structure of Vertex Algebras
4. Axioms and Fundamental Properties
5. Core Operations and Concepts
6. Fundamental Examples
7. Affine Vertex Algebras
8. Virasoro and Conformal Structure
9. Module Theory and Representations
10. Advanced Constructions
11. Intertwining Operators and Fusion
12. Zhu's Theory
13. Vertex Operator Superalgebras
14. Rationality and Finiteness
15. Moonshine and Connections
16. Computational Aspects
17. Applications and Related Areas
Virasoro and Conformal Structure
The Virasoro Algebra
Central Extension of Diff(S¹)
Commutation Relations
Central Charge Parameter
Highest Weight Theory
Virasoro Vertex Algebra
Verma Module Construction
Vertex Operator Realization
Singular Vectors
Kac Determinant
Conformal Vertex Algebras
Conformal Vector Definition
Energy-Momentum Tensor
Conformal Weight Grading
Translation Properties
Primary and Quasi-Primary Fields
Primary Field Definition
Transformation Properties
Quasi-Primary Characterization
Descendant Field Construction
Conformal Dimensions
Weight Space Decomposition
Finite Dimensional Weight Spaces
Conformal Weight Bounds
Rationality Conditions
Previous
7. Affine Vertex Algebras
Go to top
Next
9. Module Theory and Representations