UsefulLinks
Statistics
Stochastic Processes
1. Foundations of Probability Theory
2. Introduction to Stochastic Processes
3. Discrete-Time Markov Chains
4. Poisson Processes
5. Continuous-Time Markov Chains
6. Renewal Theory
7. Martingales
8. Brownian Motion
9. Stochastic Calculus
10. Stationary Processes
11. Applications in Queueing Theory
12. Applications in Finance
13. Applications in Biology and Population Dynamics
14. Applications in Physics and Engineering
9.
Stochastic Calculus
9.1.
Stochastic Integration
9.1.1.
Limitations of Classical Integration
9.1.2.
Itô Integral Construction
9.1.2.1.
Simple Processes
9.1.2.2.
Extension to General Processes
9.1.2.3.
Isometry Property
9.1.3.
Properties of Itô Integral
9.1.3.1.
Linearity
9.1.3.2.
Martingale Property
9.1.3.3.
Quadratic Variation
9.2.
Itô's Formula
9.2.1.
One-Dimensional Case
9.2.1.1.
Statement and Proof
9.2.1.2.
Chain Rule Interpretation
9.2.2.
Multidimensional Case
9.2.3.
Applications
9.2.3.1.
Geometric Brownian Motion
9.2.3.2.
Ornstein-Uhlenbeck Process
9.3.
Stochastic Differential Equations
9.3.1.
Definition and Interpretation
9.3.2.
Existence and Uniqueness
9.3.2.1.
Lipschitz Conditions
9.3.2.2.
Linear Growth Conditions
9.3.3.
Solution Methods
9.3.3.1.
Explicit Solutions
9.3.3.2.
Numerical Methods
9.3.4.
Examples
9.3.4.1.
Linear SDEs
9.3.4.2.
Ornstein-Uhlenbeck Process
9.3.4.3.
Cox-Ingersoll-Ross Model
9.4.
Girsanov's Theorem
9.4.1.
Change of Measure
9.4.2.
Radon-Nikodym Derivatives
9.4.3.
Applications to Finance
9.5.
Stochastic Exponentials
9.5.1.
Definition and Properties
9.5.2.
Novikov's Condition
Previous
8. Brownian Motion
Go to top
Next
10. Stationary Processes