Useful Links
Statistics
Statistical Inference
1. Foundations of Statistical Inference
2. Sampling and Sampling Distributions
3. Point Estimation
4. Interval Estimation and Confidence Intervals
5. Hypothesis Testing Framework
6. One-Sample Parametric Tests
7. Two-Sample Parametric Tests
8. Categorical Data Analysis
9. Analysis of Variance (ANOVA)
10. Simple Linear Regression Inference
11. Introduction to Bayesian Inference
12. Non-parametric Methods
Introduction to Bayesian Inference
Bayesian vs Frequentist Philosophy
Different Interpretations of Probability
Subjective vs Objective Probability
Parameter as Random Variable
Role of Prior Information
Bayes' Theorem
Mathematical Statement
Components and Interpretation
Updating Beliefs with Data
Continuous Parameter Version
Components of Bayesian Analysis
Prior Distribution
Expressing Prior Beliefs
Types of Priors
Informative Priors
Non-informative Priors
Conjugate Priors
Jeffreys Priors
Likelihood Function
Role in Bayesian Analysis
Same as in Frequentist Analysis
Posterior Distribution
Combining Prior and Likelihood
Normalization Constant
Posterior as Compromise
Marginal Likelihood (Evidence)
Role in Normalization
Model Comparison
Bayesian Estimation
Posterior Point Estimates
Posterior Mean
Posterior Median
Posterior Mode (MAP)
Loss Functions and Optimal Estimators
Credible Intervals
Definition and Interpretation
Equal-Tailed Intervals
Highest Posterior Density Intervals
Comparison with Confidence Intervals
Bayesian Hypothesis Testing
Bayes Factors
Definition and Calculation
Interpretation and Evidence Scale
Comparison with P-values
Posterior Probabilities of Hypotheses
Decision Theory Approach
Computational Methods
Analytical Solutions
Numerical Integration
Markov Chain Monte Carlo
Gibbs Sampling
Metropolis-Hastings Algorithm
Previous
10. Simple Linear Regression Inference
Go to top
Next
12. Non-parametric Methods