UsefulLinks
Mathematics
Numerical Methods
1. Introduction to Numerical Methods
2. Foundational Concepts in Numerical Computation
3. Root Finding Methods
4. Linear Systems of Equations
5. Interpolation and Approximation
6. Curve Fitting and Least Squares
7. Numerical Differentiation
8. Numerical Integration
9. Ordinary Differential Equations
10. Partial Differential Equations
11. Optimization Methods
12. Eigenvalue Problems
8.
Numerical Integration
8.1.
Newton-Cotes Formulas
8.1.1.
Trapezoidal Rule
8.1.1.1.
Single Application
8.1.1.2.
Composite Rule
8.1.1.3.
Error Analysis
8.1.1.4.
Adaptive Implementation
8.1.2.
Simpson's Rules
8.1.2.1.
Simpson's 1/3 Rule
8.1.2.2.
Simpson's 3/8 Rule
8.1.2.3.
Composite Simpson's Rule
8.1.2.4.
Error Analysis
8.1.3.
Higher-Order Newton-Cotes
8.1.3.1.
Boole's Rule
8.1.3.2.
Weddle's Rule
8.1.3.3.
Stability Issues
8.2.
Romberg Integration
8.2.1.
Richardson Extrapolation
8.2.2.
Romberg Table
8.2.3.
Implementation Algorithm
8.2.4.
Convergence Analysis
8.3.
Gaussian Quadrature
8.3.1.
Gauss-Legendre Quadrature
8.3.1.1.
Orthogonal Polynomials
8.3.1.2.
Nodes and Weights
8.3.1.3.
Error Analysis
8.3.2.
Other Gaussian Rules
8.3.2.1.
Gauss-Chebyshev
8.3.2.2.
Gauss-Laguerre
8.3.2.3.
Gauss-Hermite
8.4.
Adaptive Quadrature
8.4.1.
Error Estimation
8.4.2.
Recursive Subdivision
8.4.3.
Tolerance Control
8.4.4.
Implementation Strategies
8.5.
Improper Integrals
8.5.1.
Infinite Intervals
8.5.2.
Singular Integrands
8.5.3.
Transformation Techniques
8.5.4.
Special Methods
8.6.
Multiple Integrals
8.6.1.
Iterated Integration
8.6.2.
Product Rules
8.6.3.
Monte Carlo Methods
8.6.4.
Coordinate Transformations
Previous
7. Numerical Differentiation
Go to top
Next
9. Ordinary Differential Equations