UsefulLinks
Statistics
Multivariate Analysis
1. Introduction to Multivariate Analysis
2. Foundations in Matrix Algebra and Random Vectors
3. The Multivariate Normal Distribution
4. Data Preparation and Exploration
5. Principal Component Analysis
6. Factor Analysis
7. Multiple Linear Regression
8. Multivariate Analysis of Variance
9. Discriminant Analysis
10. Logistic Regression
11. Cluster Analysis
12. Canonical Correlation Analysis
13. Multidimensional Scaling
14. Advanced Multivariate Methods
5.
Principal Component Analysis
5.1.
Conceptual Foundation
5.1.1.
Objectives of PCA
5.1.1.1.
Dimensionality Reduction
5.1.1.2.
Data Visualization
5.1.1.3.
Noise Reduction
5.1.2.
Geometric Interpretation
5.1.3.
Variance Maximization Principle
5.2.
Mathematical Derivation
5.2.1.
Covariance Matrix Approach
5.2.2.
Correlation Matrix Approach
5.2.3.
Eigenvalue Problem Formulation
5.2.4.
Lagrange Multiplier Method
5.3.
PCA Implementation
5.3.1.
Data Preparation
5.3.1.1.
Centering
5.3.1.2.
Standardization Decision
5.3.2.
Covariance vs. Correlation Matrix Choice
5.3.3.
Eigenvalue Decomposition
5.3.4.
Principal Component Extraction
5.3.5.
Component Score Calculation
5.4.
Determining Number of Components
5.4.1.
Kaiser's Rule (Eigenvalue > 1)
5.4.2.
Scree Plot Analysis
5.4.3.
Cumulative Variance Explained
5.4.4.
Parallel Analysis
5.4.5.
Cross-Validation Methods
5.5.
Interpretation of Results
5.5.1.
Component Loadings
5.5.1.1.
Loading Interpretation
5.5.1.2.
Loading Plots
5.5.1.3.
Communalities
5.5.2.
Component Scores
5.5.2.1.
Score Calculation
5.5.2.2.
Score Plots
5.5.3.
Biplot Construction
5.6.
Component Rotation
5.6.1.
Orthogonal Rotations
5.6.1.1.
Varimax Rotation
5.6.1.2.
Quartimax Rotation
5.6.1.3.
Equamax Rotation
5.6.2.
Oblique Rotations
5.6.2.1.
Promax Rotation
5.6.2.2.
Direct Oblimin
5.6.3.
Rotation Interpretation
5.7.
PCA Diagnostics and Validation
5.7.1.
Adequacy Measures
5.7.2.
Stability Assessment
5.7.3.
Cross-Validation
Previous
4. Data Preparation and Exploration
Go to top
Next
6. Factor Analysis