UsefulLinks
Mathematics
Mathematical Logic
1. Introduction to Mathematical Logic
2. Propositional Logic
3. First-Order Logic
4. Model Theory
5. Computability Theory
6. Incompleteness Theorems
7. Axiomatic Set Theory
8. Proof Theory
9. Modal Logic
10. Intuitionistic Logic
11. Higher-Order Logic
6.
Incompleteness Theorems
6.1.
Formal Theories of Arithmetic
6.1.1.
Robinson Arithmetic
6.1.1.1.
Axioms and Properties
6.1.1.2.
Undecidability
6.1.2.
Peano Arithmetic
6.1.2.1.
First-Order Axioms
6.1.2.2.
Induction Schema
6.1.2.3.
Strength and Limitations
6.1.3.
Non-Standard Models of Arithmetic
6.1.3.1.
Existence and Properties
6.1.3.2.
Overspill Principle
6.2.
Representability of Computable Functions
6.2.1.
Definition of Representability
6.2.2.
Examples in Arithmetic
6.2.3.
Representability Theorem
6.3.
Gödel Numbering
6.3.1.
Encoding Formulas and Proofs
6.3.2.
Properties of Gödel Numbering
6.3.3.
Primitive Recursive Relations
6.4.
The Diagonal Lemma
6.4.1.
Statement and Proof Outline
6.4.2.
Role in Incompleteness Proofs
6.4.3.
Fixed Point Theorem
6.5.
Gödel's First Incompleteness Theorem
6.5.1.
Construction of the Gödel Sentence
6.5.2.
Proof of the Theorem
6.5.3.
Consequences for Formal Systems
6.5.3.1.
Incompleteness of Arithmetic
6.5.3.2.
Limitations of Formalization
6.5.4.
Rosser's Improvement
6.6.
Gödel's Second Incompleteness Theorem
6.6.1.
Formalizing Consistency
6.6.2.
The Unprovability of Consistency
6.6.3.
Hilbert's Program
6.6.4.
Derivability Conditions
6.7.
Related Results
6.7.1.
Tarski's Undefinability of Truth
6.7.1.1.
Statement and Implications
6.7.1.2.
Hierarchy of Truth Predicates
6.7.2.
Löb's Theorem
6.7.2.1.
Statement and Applications
6.7.2.2.
Provability Logic
Previous
5. Computability Theory
Go to top
Next
7. Axiomatic Set Theory