Category: Prime knots and links

Whitehead link
In knot theory, the Whitehead link, named for J. H. C. Whitehead, is one of the most basic links. It can be drawn as an alternating link with five crossings, from the overlay of a circle and a figure-
List of prime knots
In knot theory, prime knots are those knots that are indecomposable under the operation of knot sum. The prime knots with ten or fewer crossings are listed here for quick comparison of their propertie
Prime knot
In knot theory, a prime knot or prime link is a knot that is, in a certain sense, indecomposable. Specifically, it is a non-trivial knot which cannot be written as the knot sum of two non-trivial knot
Conway knot
In mathematics, in particular in knot theory, the Conway knot (or Conway's knot) is a particular knot with 11 crossings, named after John Horton Conway. It is related by mutation to the Kinoshita–Tera
Kinoshita–Terasaka knot
In knot theory, the Kinoshita–Terasaka knot is a particular prime knot. It has 11 crossings. The Kinoshita–Terasaka knot has a variety of interesting mathematical properties. It is related by mutation
Hopf link
In mathematical knot theory, the Hopf link is the simplest nontrivial link with more than one component. It consists of two circles linked together exactly once, and is named after Heinz Hopf.